Publications by authors named "Renze Ma"

Here, we utilize the stability of proteins from rates of oxidation (SPROX) technique, to profile the thermodynamic stabilities of proteins in brain tissue cell lysates from Huα-Syn(A53T) transgenic mice at three time points including at 1 month ( = 9), at 6 months ( = 7), and at the time (between 9 and 16 months) a mouse became symptomatic ( = 8). The thermodynamic stability profiles generated here on 332 proteins were compared to thermodynamic stability profiles generated on the same proteins from similarly aged wild-type mice using a two-way unbalanced analysis of variance (ANOVA) analysis. This analysis identified a group of 22 proteins with age-related protein stability changes and a group of 11 proteins that were differentially stabilized in the Huα-Syn(A53T) transgenic mouse model.

View Article and Find Full Text PDF

Recently, several mass-spectrometry- and protein-denaturation-based proteomic methods have been developed to facilitate protein target discovery efforts in drug mode-of-action studies. These methods, which include the stability of proteins from rates of oxidation (SPROX), pulse proteolysis (PP), chemical denaturation and protein precipitation (CPP), and thermal proteome profiling (TPP) techniques, have been used in an increasing number of applications in recent years. However, while the advantages and disadvantages to using these different techniques have been reviewed, the analytical characteristics of these methods have not been directly compared.

View Article and Find Full Text PDF

Described here is a chemo-selective enrichment strategy, termed the semitryptic peptide enrichment strategy for proteolysis procedures (STEPP), to isolate the semitryptic peptides generated in mass spectrometry-based proteome-wide applications of limited proteolysis methods. The strategy involves reacting the ε-amino groups of lysine side chains and any N-termini created in the limited proteolysis reaction with isobaric mass tags. A subsequent digestion of the sample with trypsin and the chemo-selective reaction of the newly exposed N-termini of the tryptic peptides with N-hydroxysuccinimide (NHS)-activated agarose resin removes the tryptic peptides from solution, leaving only the semitryptic peptides with one nontryptic cleavage site generated in the limited proteolysis reaction for subsequent LC-MS/MS analysis.

View Article and Find Full Text PDF

Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP).

View Article and Find Full Text PDF

Described here is a mass spectrometry-based proteomics approach for the large-scale analysis of protein-drug interactions. The approach involves the evaluation of ligand-induced protein folding free energy changes (ΔΔ G) using chemical denaturation and protein precipitation (CPP) to identify the protein targets of drugs and to quantify protein-drug binding affinities. This is accomplished in a chemical denaturant-induced unfolding experiment where the folded and unfolded protein fractions in each denaturant containing buffer are quantified by the amount of soluble or precipitated protein (respectively) that forms upon abrupt dilution of the chemical denaturant and subsequent centrifugation of the sample.

View Article and Find Full Text PDF

Amyloid formation of natively folded proteins involves global and/or local unfolding of the native state to form aggregation-prone intermediates. Here we report solid-state nuclear magnetic resonance (NMR) structural studies of amyloid derived from wild-type (WT) and more aggressive mutant forms of transthyretin (TTR) to investigate the structural changes associated with effective TTR aggregation. We employed selective C labeling schemes to investigate structural features of β-structured core regions in amyloid states of WT and two mutant forms (V30M and L55P) of TTR.

View Article and Find Full Text PDF

The first, asymmetric total synthesis of the proposed structure of (+)-uprolide G acetate (UGA) is reported, and the spectral properties of the synthetic compound clearly differed from those reported for natural UGA. On the basis of comprehensive analysis of the NMR data, two possible structures for the natural UGA were proposed and their total synthesis achieved, thus leading to the identification and confirmation of the correct structure and absolute configuration of the natural UGA. This synthesis was enabled by development of a novel synthetic strategy, which revolved around three key cyclization reactions: an Achmatowicz rearrangement, Sharpless asymmetric dihydroxylation/lactonization, and ring-closing metathesis.

View Article and Find Full Text PDF