Publications by authors named "Renze Heidstra"

Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development.

View Article and Find Full Text PDF

Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper.

View Article and Find Full Text PDF

Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD).

View Article and Find Full Text PDF

Plant development continues postembryonically with a lifelong ability to form new tissues and organs. Asymmetric cell division, coupled with fate segregation, is essential to create cellular diversity during tissue and organ formation. Arabidopsis (Arabidopsis thaliana) plants harboring mutations in the SCHIZORIZA (SCZ) gene display fate segregation defects in their roots, resulting in the presence of an additional layer of endodermis, production of root hairs from subepidermal tissue, and misexpression of several tissue identity markers.

View Article and Find Full Text PDF

Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how plant meristem coordinates growth through specialized cell networks and maturation gradients to drive the development of various phases for indeterminate growth.
  • Single-cell transcriptomics was used to trace the protophloem developmental process, highlighting the role of PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors in initiating cell differentiation and signaling pathways.
  • Differentiation is initially restricted by a meristem-wide gradient of PLETHORA transcription factors, which, once dissipated, allows the activation of differentiation programs that regulate early and late developmental phases.
View Article and Find Full Text PDF
Article Synopsis
  • Root development is essential for plant growth and food production, and researchers are shifting from agar-based media to soil (rhizotrons) to study root system architecture (RSA) more effectively.
  • The study compares responses of CRISPR mutants with varying secondary root defects in both agar plates and soil, revealing that certain mutants appear less distinct in soil due to increased secondary root density.
  • Findings suggest that growth conditions significantly influence RSA and that the best method for analyzing root phenotypes isn't fixed but may vary by genotype.
View Article and Find Full Text PDF

The presence of two meristematic cell populations in the root and shoot apex allows plants to grow indefinitely. Due to its simple and predictable tissue organization, the Arabidopsis root apical meristem remains an ideal model to study mechanisms such as stem cell specification, asymmetric cell division, and differentiation in plants. The root stem cell niche consists of a quiescent organizing centre surrounded by mitotically active stem cells, which originate all root tissues.

View Article and Find Full Text PDF

Knocking out SOBIR1 in by CRISPR/Cas9, abolishes the functionality of the transgenic receptor-like protein Cf-4, recognizing the Avr4 effector of the fungus .

View Article and Find Full Text PDF

Continuous formation of somatic tissues in plants requires functional stem cell niches where undifferentiated cells are maintained. In , () and () genes are outputs of apical-basal and radial patterning systems, and both are required for root stem cell specification and maintenance. The () gene is specifically expressed in and required for functions of a small group of root stem cell organizer cells, also called the quiescent center (QC).

View Article and Find Full Text PDF

Recent findings highlight three instances in which major aspects of plant development are controlled by dosage-dependent protein levels. In the shoot apical meristem the mobile transcription factor WUS displays an intricate function with respect to target regulation that involves WUS dosage, binding site affinity and protein dimerization. The size of the root meristem is controlled by dosage-dependent PLT protein activity.

View Article and Find Full Text PDF

Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive.

View Article and Find Full Text PDF

Nodules are unique organs formed on roots of legumes by soil-borne bacteria, collectively known as rhizobium. Recently, we have shown that orthologs of the AINTEGUMENTA-like (AIL) AP2 transcription factors PLETHORA (PLT) 1 to 4, that redundantly regulate Arabidopsis thaliana root development are involved in root and nodule growth in Medicago truncatula. Hence, it is conceivable that rhizobium has co-opted these genes for nodule development.

View Article and Find Full Text PDF

Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues.

View Article and Find Full Text PDF

SCARECROW controls Arabidopsis root meristem size from the root endodermis tissue by regulating the DELLA protein RGA that in turn mediates the regulation of ARR1 levels at the transition zone. Coherent organ growth requires a fine balance between cell division and cell differentiation. Intriguingly, plants continuously develop organs post-embryonically thanks to the activity of meristems that allow growth and environmental plasticity.

View Article and Find Full Text PDF

A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step.

View Article and Find Full Text PDF

Intercellular signaling through trafficking of regulatory proteins is a widespread phenomenon in plants and can deliver positional information for the determination of cell fate. In the Arabidopsis root meristem, the cell fate determinant SHORT-ROOT (SHR), a GRAS domain transcription factor, acts as a signaling molecule from the stele to the adjacent layer to specify endodermal cell fate. Upon exiting the stele, SHR activates another GRAS domain transcription factor, SCARCROW (SCR), which, together with several BIRD/INDETERMINATE DOMAIN proteins, restricts movement of SHR to define a single cell layer of endodermis.

View Article and Find Full Text PDF

Nodules on the roots of legume plants host nitrogen-fixing Rhizobium bacteria. Several lines of evidence indicate that nodules are evolutionarily related to roots. We determined whether developmental control of the Medicago truncatula nodule meristem bears resemblance to that in root meristems through analyses of root meristem-expressed PLETHORA genes.

View Article and Find Full Text PDF

The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size.

View Article and Find Full Text PDF

During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction.

View Article and Find Full Text PDF

The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development.

View Article and Find Full Text PDF

Members of the AINTEGUMENTA-LIKE (AIL) family of APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain transcription factors are expressed in all dividing tissues in the plant, where they have central roles in developmental processes such as embryogenesis, stem cell niche specification, meristem maintenance, organ positioning, and growth. When overexpressed, AIL proteins induce adventitious growth, including somatic embryogenesis and ectopic organ formation. The Arabidopsis (Arabidopsis thaliana) genome contains eight AIL genes, including AINTEGUMENTA, BABY BOOM, and the PLETHORA genes.

View Article and Find Full Text PDF

A critical issue in development is the coordination of the activity of stem cell niches with differentiation of their progeny to ensure coherent organ growth. In the plant root, these processes take place at opposite ends of the meristem and must be coordinated with each other at a distance. Here, we show that in Arabidopsis, the gene SCR presides over this spatial coordination.

View Article and Find Full Text PDF

Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress.

View Article and Find Full Text PDF