This publisher's note contains corrections to Opt. Lett.46, 1478 (2021)OPLEDP0146-959210.
View Article and Find Full Text PDFThin-film lithium-niobate-on-insulator (LNOI) is a very attractive platform for optical interconnect and nonlinear optics. It is essential to enable lithium niobate photonic integrated circuits with low power consumption. Here we present an edge-coupling Mach-Zehnder modulator on the platform with low fiber-chip coupling loss of 0.
View Article and Find Full Text PDFApplications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability.
View Article and Find Full Text PDFWe demonstrate a high-performance reconfigurable bandpass filter implemented by cascaded Sagnac loop mirror (SLM)-based coupled resonator optical waveguides (CROWs) on the silicon-on-insulator platform. By dynamic thermal tuning of the reflectivity in each SLM, the proposed filter can achieve simultaneous 3 dB bandwidth tuning from 8.50 to 20.
View Article and Find Full Text PDFMulti-photon interference in large multi-port interferometers is key to linear optical quantum computing and in particular to boson sampling. Silicon photonics enables complex interferometric circuits with many components in a small footprint and has the potential to extend these experiments to larger numbers of interfering modes. However, loss has generally limited the implementation of multi-photon experiments in this platform.
View Article and Find Full Text PDF