Publications by authors named "Renxue Wang"

Background: Ubiquitin-specific protease 53 (USP53) deficiency is associated with familial intrahepatic cholestasis in which serum gamma-glutamyl transferase (GGT) activity is relatively low. However, how USP53 deficiency contributes to cholestasis is obscure. No animal model has been reported.

View Article and Find Full Text PDF

The progression of spermatogenesis along specific developmental trajectories depends on the coordinated regulation of pre-mRNA alternative splicing (AS) at the post-transcriptional level. However, the fundamental mechanism of AS in spermatogenesis remains to be investigated. Here, it is demonstrated that CWF19L2 plays a pivotal role in spermatogenesis and male fertility.

View Article and Find Full Text PDF

Background And Aims: Variants in underlie a disorder characterised by progressive portal fibrosis, portal hypertension and eventual liver decompensation. We aim to create an animal model to elucidate the pathogenic mechanism.

Methods: knockout ( ) mice were generated and exposed to different liver toxins.

View Article and Find Full Text PDF

Background And Aims: We asked if comprehensive bile acid profiling could provide insights into the physiopathology of -mutated patients and evaluated the prognostic value of taurine-conjugated tetrahydroxylated bile acid (tauro-THBA) in cholestasis.

Methods: Serum bile acid profiles were evaluated in 13 -mutated patients with 65 healthy controls by ultra-high-performance liquid chromatography/multiple-reaction monitoring-mass spectrometry (UPLC/MRM-MS). The concentration of tauro-THBA was compared between -mutated patients with different prognoses.

View Article and Find Full Text PDF

Background: The liver manifestations of Alagille syndrome (ALGS) are highly variable, and factors affecting its prognosis are poorly understood. We asked whether the composition of bile acids in ALGS patients with good clinical outcomes differs from that in patients with poor outcomes and whether bile acids could be used as prognostic biomarkers.

Methods: Blood for bile acid profiling was collected from genetically confirmed JAG1-associated ALGS patients before one year of age.

View Article and Find Full Text PDF

Background And Aims: The aim was to determine if liver biochemistry indices can be used as biomarkers to help differentiate patients with neonatal Dubin-Johnson syndrome (nDJS) from those with biliary atresia (BA).

Methods: Patients with genetically-confirmed nDJS or cholangiographically confirmed BA were retrospectively enrolled and randomly assigned to discovery or verification cohorts. Their liver chemistries, measured during the neonatal period, were compared.

View Article and Find Full Text PDF

Bile acids are key components of bile required for human health. In humans and mice, conditions of reduced bile flow, cholestasis, induce bile acid detoxification by producing tetrahydroxylated bile acids (THBA), more hydrophilic and less cytotoxic than the usual bile acids, which are typically di- or tri-hydroxylated. Mice deficient in the Bile Salt Export Pump (Bsep, or Abcb11), the primary bile acid transporter in liver cells, produce high levels of THBA, and avoid the severe liver damage typically seen in humans with BSEP deficiencies.

View Article and Find Full Text PDF

Background: We ask if plasma bile acid profiles can be used to monitor the effectiveness of partial internal biliary diversion (PIBD) for treating uncontrolled cholestasis in progressive familial intrahepatic cholestasis type 2 (PFIC2) patients.

Methods: Plasma bile acids were profiled in 3 cases of ATP-binding cassette, sub-family B member 11 ()mutated PFIC2 children before and after PIBD compared to healthy controls and 8 PFIC2 patients. The quantitation of bile acids was performed by reversed-phase ultrahigh-performance liquid chromatography/multiple-reaction monitoring-mass spectrometry (UPLC/MRM-MS) with negative ion detection.

View Article and Find Full Text PDF

Bile acid imbalance causes progressive familial intrahepatic cholestasis type 2 (PFIC2) or type 3 (PFIC3), severe liver diseases associated with genetic defects in the biliary bile acid transporter bile salt export pump (BSEP; ABCB11) or phosphatidylcholine transporter multidrug resistance protein 3 (MDR3; ABCB4), respectively. mice (a PFIC3 model) develop progressive cholangitis, ductular proliferation, periportal fibrosis, and hepatocellular carcinoma (HCC) because the nonmicelle-bound bile acids in the bile of these mice are toxic. We asked whether the highly hydrophilic bile acids generated by mice could protect mice from progressive liver damage.

View Article and Find Full Text PDF

Background & Aims: Genetic defects causing dysfunction in bile salt export pump (BSEP/ABCB11) lead to liver diseases. ABCB11 mutations alter the bile acid metabolome. We asked whether profiling plasma bile acids could reveal compensatory mechanisms and track genetic and clinical status.

View Article and Find Full Text PDF

Unlabelled: Hereditary cholestasis in childhood and infancy with normal serum gamma-glutamyltransferase (GGT) activity is linked to several genes. Many patients, however, remain genetically undiagnosed. Defects in myosin VB (MYO5B; encoded by MYO5B) cause microvillus inclusion disease (MVID; MIM251850) with recurrent watery diarrhea.

View Article and Find Full Text PDF

To obtain a more comprehensive profile of bile acids (BAs) in blood, we developed an ultrahigh performance liquid chromatography/multiple-reaction monitoring-mass spectrometry (UPLC-MRM-MS) method for the separation and detection of 50 known BAs. This method utilizes phospholipid-depletion solid-phase extraction as a new high-efficiency sample preparation procedure for BA assay. UPLC/scheduled MRM-MS with negative ion electrospray ionization enabled targeted quantitation of 43 and 44 BAs, respectively, in serum samples from seven individuals with and without fasting, as well as in plasma samples from six cholestatic gene knockout mice and six age- and gender-matched wild-type (FVB/NJ) animals.

View Article and Find Full Text PDF

The bile salt export pump (BSEP/Bsep; gene symbol ABCB11/Abcb11) translocates bile salts across the hepatocyte canalicular membrane into bile in humans and mice. In humans, mutations in the ABCB11 gene cause a severe childhood liver disease known as progressive familial intrahepatic cholestasis type 2. Targeted inactivation of mouse Bsep produces milder persistent cholestasis due to detoxification of bile acids through hydroxylation and alternative transport pathways.

View Article and Find Full Text PDF

The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy.

View Article and Find Full Text PDF

The bile salt export pump (Bsep) mediates the hepatic excretion of bile acids, and its deficiency causes progressive familial intrahepatic cholestasis. The current study aimed to induce bile acid stress in Bsep(-/-) mice and to test the efficacy of hepatocyte transplantation in this disease model. We fed Bsep(-/-) and wild-type mice cholic acid (CA) or ursodeoxycholic acid (UDCA).

View Article and Find Full Text PDF

The biliary secretion of bile acids is critical for multiple liver functions including digesting fatty nutrients and driving bile flow. When this process is impaired, the accumulating bile acids cause inflammatory liver injury. Multiple ABC transporters in the liver are key players to safeguard the hepatocyte and avoid toxicity due to bile acid over-accumulation.

View Article and Find Full Text PDF

Unlabelled: Bile salt export pump (BSEP; ATP-binding cassette, subfamily B, member 11) mutations in humans result in progressive familial intrahepatic cholestasis type 2, a fatal liver disease with greatly reduced bile flow. However in mice, Bsep knockout leads only to mild cholestasis with substantial bile flow and up-regulated P-glycoprotein genes (multidrug resistance protein 1a [Mdr1a] and Mdr1b). To determine whether P-glycoprotein is responsible for the relatively mild phenotype observed in Bsep knockout mice, we have crossed mouse strains knocked out for Bsep and the two P-glycoprotein genes and generated a triple knockout mouse.

View Article and Find Full Text PDF

Cell transplantation is a potential therapy for acquired or inherited liver diseases. Donor-derived hepatocytes (DDH) have been found in humans and mice after bone marrow transplantation (BMT) but with highly variable frequencies in different disease models. To test the effect of liver repopulation after BMT in inherited cholestatic liver diseases, spgp (sister of P-glycoprotein, or bile salt export pump, abcb11) knockout mice, a model for human progressive intrahepatic cholestasis type 2 with defects in excreting bile salts across the hepatocyte canalicular membrane, were transplanted with bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic donor mice after lethal irradiation.

View Article and Find Full Text PDF

In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis.

View Article and Find Full Text PDF

Multidrug resistance protein 3 (MRP3) is an ATP-binding cassette transporter that is able to confer resistance to anticancer agents such as etoposide and to transport lipophilic anions such as bile acids and glucuronides. These capabilities, along with the induction of the MRP3 protein on hepatocyte sinusoidal membranes in cholestasis and the expression of MRP3 in enterocytes, have led to the hypotheses that MRP3 may function in the body to protect normal tissues from etoposide, to protect cholestatic hepatocytes from endobiotics, and to facilitate bile-acid reclamation from the gut. To elucidate the role of Mrp3 in these processes, the Mrp3 gene (Abcc3) was disrupted by homologous recombination.

View Article and Find Full Text PDF

Intrahepatic cholestasis is often associated with impairment of biliary bile acid secretion, a process mediated by the sister of P-glycoprotein (Spgp or Abcb11) also known as the bile salt export pump (Bsep). In humans, mutations in the Spgp gene are associated with a fatal childhood disease, type 2 progressive familial intrahepatic cholestasis (PFIC2). However in mice, the "knockout" of Spgp only results in mild cholestasis.

View Article and Find Full Text PDF

In animals, if one sex of the F1 hybrid between two species is sterile or inviable, it is usually the heterogametic (XY or WZ) sex. This phenomenon, known as Haldane's rule, is currently thought to be coincidentally caused by different mechanisms in separate entities. The following questions have never been asked: Are heterogametic and homogametic inferiority (sterility or inviability) equivalent as isolating mechanisms? Could discrepancies between them, if existing, produce Haldane's rule? Here I consider sex-biased hybrid inferiority strictly as an isolating mechanism, and quantitatively evaluate its strength in impeding gene flow.

View Article and Find Full Text PDF

Bile formation and its canalicular secretion are essential functions of the mammalian liver. The sister-of-p-glycoprotein (spgp) gene was shown to encode the canalicular bile salt export protein, and mutations in spgp gene were identified as the cause of progressive familial intrahepatic cholestasis type 2. However, target inactivation of spgp gene in mice results in nonprogressive but persistent cholestasis and causes the secretion of unexpectedly large amounts of unknown tetrahydroxylated bile acid in the bile.

View Article and Find Full Text PDF