Publications by authors named "Renxiang Zhou"

Article Synopsis
  • - Severe acute pancreatitis (SAP) is a serious inflammatory condition of the pancreas with limited treatment options, prompting the development of a new nanotherapeutic called pHA@IBNCs to alleviate inflammation and restore intestinal health.
  • - The pHA@IBNCs are formed by combining an antioxidant (EGCG), an anti-inflammatory cytokine (IL-22), and a framework protein (bovine serum albumin), then coated with a modified hyaluronic acid to target damaged cells in the pancreas and intestines.
  • - When administered, the pHA@IBNCs effectively accumulate at inflammation sites, releasing their therapeutic agents in response to the high levels of reactive oxygen species (ROS) present, which helps reduce inflammation and
View Article and Find Full Text PDF

Cell-free DNA (cfDNA) scavenging represents a promising anti-inflammatory modality for autoimmune disease (AID) treatment. However, it remains challenging for existing systems to achieve inflammation-targeted cfDNA scavenging and the management of cfDNA-unrelated inflammatory pathways. Herein, inflammation-responsive polyion complex vesicles (PICsomes) are developed, bridging inflammation-instructed cfDNA scavenging, and methotrexate (MTX) delivery for AID management.

View Article and Find Full Text PDF

During rheumatoid arthritis (RA) development, over-produced proinflammatory cytokines represented by tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) represented by H O form a self-promoted cycle to exacerbate the synovial inflammation and tissue damage. Herein, biomimetic nanocomplexes (NCs) reversibly cloaked with macrophage membrane (RM) are developed for effective RA management via dual scavenging of TNF-α and ROS. To construct the NCs, membrane-penetrating, helical polypeptide first condenses TNF-α siRNA (siTNF-α) and forms the cationic inner core, which further adsorbs catalase (CAT) via electrostatic interaction followed by surface coating with RM.

View Article and Find Full Text PDF

The manipulation of the flexibility/rigidity of polymeric chains to control their function is commonly observed in natural macromolecules but largely unexplored in synthetic systems. Herein, we construct a series of protein-mimetic nano-switches consisting of a gold nanoparticle (GNP) core, a synthetic polypeptide linker, and an optically functional molecule (OFM), whose biological function can be dynamically regulated by the flexibility of the polypeptide linker. At the dormant state, the polypeptide adopts a flexible, random-coiled conformation, bringing GNP and OFM in close proximity that leads to the "turn-off" of the OFM.

View Article and Find Full Text PDF

Protein drugs targeting intracellular machineries have shown profound therapeutic potentials, but their clinical utilities are greatly hampered by the lack of efficient cytosolic delivery techniques. Existing strategies mainly rely on nanocarriers or conjugated cell-penetrating peptides (CPPs), which often have drawbacks such as materials complexity/toxicity, lack of cell specificity, and endolysosomal entrapment. Herein, a unique carrier-free approach is reported for mediating cancer-selective and endocytosis-free cytosolic protein delivery.

View Article and Find Full Text PDF

Systemic immunosuppression mediated by tumor-derived exosomes is an important cause for the resistance of immune checkpoint blockade (ICB) therapy. Herein, self-adaptive platelet (PLT) pharmacytes are engineered to mediate cascaded delivery of exosome-inhibiting siRNA and anti-PD-L1 (aPDL1) toward synergized antitumor immunity. In the pharmacytes, polycationic nanocomplexes (NCs) assembled from Rab27 siRNA (siRab) and a membrane-penetrating polypeptide are encapsulated inside the open canalicular system of PLTs, and cytotoxic T lymphocytes (CTLs)-responsive aPDL1 nanogels (NGs) are covalently backpacked on the PLT surface.

View Article and Find Full Text PDF

Overactivated T cells and overproduced pro-inflammatory cytokines form a self-amplified signaling loop to continuously exacerbate the dysregulated inflammatory response and propel the progression of autoimmune diseases (AIDs). Herein, immuno-engineered nanodecoys (NDs) based on poly(lactic-co-glycolic acid) nanoparticles coated with programmed death-ligand 1 (PD-L1)-expressing macrophage membrane (PRM) are developed to mediate multi-target interruption of the self-promoted inflammatory cascade in AIDs. The PRM collected from IFN-γ-treated RAW 264.

View Article and Find Full Text PDF

Cytosolic protein delivery holds great potential for the development of protein-based biotechnologies and therapeutics. Currently, cytosolic protein delivery is mainly achieved with the assistance of various carriers. Herein, we present a universal and effective strategy for carrier-free cytosolic protein delivery via metabolic glycoengineering and bioorthogonal click reactions.

View Article and Find Full Text PDF

Long noncoding RNAs have been reported to be dysregulated and have pivotal roles in various human malignancies, including glioma. Previous studies revealed that metallothionein 1J (MT1JP) has important regulatory functions in the development of gastric cancer. However, the biological role and potential mechanism of MT1JP in glioma remain unknown.

View Article and Find Full Text PDF

Objective: To investigate the effect of Haishengsu, an extract from Tegillarca granosa, on non-small cell lung cancer as an adjunct to conventional chemotherapy. DESIGNS/SETTINGS: Randomized, double-blind, placebo-controlled trial was conducted in 83 patients. The Haishengsu (n=42, 2.

View Article and Find Full Text PDF