Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS), Fourier transform mid-infrared (FT-IR) and Raman spectroscopy combined with chemometrics were investigated to quantify calcium (Ca) content in infant formula powder (INF). INF samples (n = 51) with calcium content levels (ca. 6.
View Article and Find Full Text PDFPharmacological therapy of osteoporosis reduces bone loss and risk of fracture in patients. Modulation of bone mineral density cannot explain all effects. Other aspects of bone quality affecting fragility and ways to monitor them need to be better understood.
View Article and Find Full Text PDFClin Med Insights Arthritis Musculoskelet Disord
January 2018
Studies have shown that Raman spectroscopic analysis of fingernail clippings can help differentiate between post-menopausal women who have and who have not suffered a fracture. However, all studies to date have been retrospective in nature, comparing the proteins in nails sourced from women, post-fracture. The objective of this study was to investigate the potential of a prospective test for hip fracture based on spectroscopic analysis of nail tissue.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2018
Osteoporosis is a common disease characterised by reduced bone mass and an increased risk of fragility fractures. Low bone mineral density is known to significantly increase the risk of osteoporotic fractures, however, the majority of non-traumatic fractures occur in individuals with a bone mineral density too high to be classified as osteoporotic. Therefore, there is an urgent need to investigate aspects of bone health, other than bone mass, that can predict the risk of fracture.
View Article and Find Full Text PDFRaman spectroscopy is a noninvasive, nondestructive tool for capturing multiplexed biochemical information across diverse molecular species including proteins, lipids, DNA, and mineralizations. Based on light scattering from molecules, cells, and tissues, it is possible to detect molecular fingerprints and discriminate between subtly different members of each biochemical class. Raman spectroscopy is ideal for detecting perturbations from the expected molecular structure such as those occurring during senescence and the modification of long-lived proteins by metabolic intermediates as we age.
View Article and Find Full Text PDFPurpose: Raman spectroscopy is an effective probe of advanced glycation end products (AGEs) in Bruch's membrane. However, because it is the outermost layer of the retina, this extracellular matrix is difficult to analyze in vivo with current technology. The sclera shares many compositional characteristics with Bruch's membrane, but it is much easier to access for in vivo Raman analysis.
View Article and Find Full Text PDFAging of the human retina is characterized by progressive pathology, which can lead to vision loss. This progression is believed to involve reactive metabolic intermediates reacting with constituents of Bruch's membrane, significantly altering its physiochemical nature and function. We aimed to replace a myriad of techniques following these changes with one, Raman spectroscopy.
View Article and Find Full Text PDFEvery organ compromises of several different cell types. When studying the effects of a chosen compound within this organ or tissue uptake, localisation, metabolism, and the effect itself can be expected to differ between cells. Using the example of Vitamin E in pulmonary tissue we introduce confocal Raman Microscopy as a superior method to localise lipid-soluble compounds within tissues and cells.
View Article and Find Full Text PDFThe influence of ageing and cooking on the Raman spectrum of porcine longissimus dorsi was investigated. The rich information contained in the Raman spectrum was highlighted, with numerous changes attributed to changes in the environment and conformations of the myofibrillar proteins. Predictions equations for shear force and cooking loss were developed from the Raman spectra of both raw and cooked pork.
View Article and Find Full Text PDFPurpose: To characterize the Raman spectra of porcine inner retinal layers, specifically, the inner nuclear, inner plexiform, ganglion cell, and nerve fiber layers.
Methods: Raman microscopy was employed at three excitation wavelengths, 785, 633, and 514 nm to measure Raman spectra in a high resolution grid across the inner layers of 4% paraformaldehyde cryoprotected porcine retina. Multivariate statistics were used to summarize the principal spectral signals within those layers and to map the distribution of each of those signals.
The modification of proteins by nonenzymatic glycation leading to accumulation of advanced glycation end products (AGEs) is a well-established phenomenon of aging. In the eyes of elderly patients, these adducts have been observed in retinal pigment epithelium (RPE), particularly within the underlying pentalaminar substrate known as Bruch's membrane. AGEs have also been localized to age-related subcellular deposits (drusen and basal laminar deposits) and are thought to play a pathogenic role in progression of the major sight-threatening condition known as age-related macular degeneration (AMD).
View Article and Find Full Text PDFIn this study multivariate analysis of Raman spectra has been used to classify adipose tissue from four different species (chicken, beef, lamb and pork). The adipose samples were dissected from the carcass and their spectra recorded without further preparation. 102 samples were used to create and compare a range of statistical models, which were then tested on 153 independent samples.
View Article and Find Full Text PDFThe aim was twofold; to demonstrate the ability of temperature-controlled Raman microscopy (TRM) to locate mannitol within a frozen system and determine its form; to investigate the annealing behavior of mannitol solutions at -30 degrees C. The different polymorphic forms of anhydrous mannitol as well as the hemihydrate and amorphous form were prepared and characterized using crystal or powder X-ray diffractometry (XRD) as appropriate and Raman microscopy. Mannitol solutions (3% w/v) were cooled before annealing at -30 degrees C.
View Article and Find Full Text PDFAlpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents.
View Article and Find Full Text PDFRaman spectroscopy is recognized as a tool for chemometric analysis of biological materials due to the high information content relating to specific physical and chemical qualities of the sample. Thirty cells belonging to two different prostatic cell lines, PNT1A (immortalized normal prostate cell line) and LNCaP (malignant cell line derived from prostate metastases), were mapped using Raman microscopy. A range of spectral preprocessing methods (partial least-squares discriminant analyses (PLSDAs), principal component analyses (PCAs), and adjacent band ratios (ABRs)) were compared for input into linear discriminant analysis to model and classify the two cell lines.
View Article and Find Full Text PDFRaman spectroscopy has been used for the first time to predict the FA composition of unextracted adipose tissue of pork, beef, lamb, and chicken. It was found that the bulk unsaturation parameters could be predicted successfully [R2 = 0.97, root mean square error of prediction (RMSEP) = 4.
View Article and Find Full Text PDFPurpose: Raman microscopy, based upon the inelastic scattering (Raman) of light by molecular species, has been applied as a specific structural probe in a wide range of biomedical samples. The purpose of the present investigation was to assess the potential of the technique for spectral characterization of the porcine outer retina derived from the area centralis, which contains the highest proportion of cone:rod cell ratio in the pig retina.
Methods: Retinal cross-sections, immersion-fixed in 4% (w/v) PFA and cryoprotected, were placed on salinized slides and air-dried prior to direct Raman microscopic analysis at three excitation wavelengths, 785 nm, 633 nm, and 514 nm.
Raman spectroscopy has been used to predict the abundance of the FA in clarified butterfat that was obtained from dairy cows fed a range of levels of rapeseed oil in their diet. Partial least squares regression of the Raman spectra against FA compositions obtained by GC showed good prediction for the five major (abundance >5%) FA with R2 = 0.74-0.
View Article and Find Full Text PDFThe work presented here is aimed at determining the potential and limitations of Raman spectroscopy for fat analysis by carrying out a systematic investigation of C4-C24 FAME. These provide a simple, well-characterized set of compounds in which the effect of making incremental changes can be studied over a wide range of chain lengths and degrees of unsaturation. The effect of temperature on the spectra was investigated over much larger ranges than would normally be encountered in real analytical measurements.
View Article and Find Full Text PDF