Publications by authors named "Renukadevi Patil"

Background: Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents.

Objective: With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents.

View Article and Find Full Text PDF

In ovarian cancer (OVCA), treatment failure due to chemo-resistance is a serious challenge. It is therefore critical to identify new therapies that are effective against resistant tumors and have reduced side effects. We recently identified 4-H-chromenes as tubulin depolymerizing agents that bind to colchicine site of beta-tubulin.

View Article and Find Full Text PDF

The vacuolar (H⁺)-ATPases (V-ATPases) are a family of ATP-driven proton pumps and they have been associated with cancer invasion, metastasis, and drug resistance. Despite the clear involvement of V-ATPases in cancer, the therapeutic use of V-ATPase-targeting small molecules has not reached human clinical trials to date. Thus, V-ATPases are emerging as important targets for the identification of potential novel therapeutic agents.

View Article and Find Full Text PDF

Indanone is one of the privileged structures in medicinal chemistry and it's commonly associated with various pharmacologically active compounds. The indanone moiety is found in several natural compounds and also, it can be used as intermediate in the synthesis of many different types of medicinally important molecules. Among the medicinally important indanones, the most significant drug probably is donepezil (IV), an acetylcholinesterase (AChE) inhibitor, which has been approved by the US Food and Drug Administration for the treatment of Alzheimer's disease (AD).

View Article and Find Full Text PDF

Macrocyclic chemistry is one of the emerging research areas in the chemical science. Macrocyclic compounds continue to attract significant attention due to their numerous possible applications particularly in the areas like biology, catalysis and industry. This review article summarizes the developments and advances in synthesis and medicinal applications of macrocyclic compounds derived from (benz)imidazole- and indole-based heterocycles.

View Article and Find Full Text PDF

Background: Discovery of novel antiviral agents is essential because viral infection continues to threaten human life globally. Various heterocyclic small molecules have been developed as antiviral agents. The 5,6-dimethoxyindan-1-on nucleus is of considerable interest as this ring is the key constituent in a range of bioactive compounds, both naturally occurring and synthetic, and often of considerable complexity.

View Article and Find Full Text PDF

Liver fibrosis is a critical wound healing response to chronic liver injury such as hepatitis C virus (HCV) infection. If persistent, liver fibrosis can lead to cirrhosis and hepatocellular carcinoma (HCC). The development of new therapies for preventing liver fibrosis and its progression to cancer associated with HCV infection remains a critical challenge.

View Article and Find Full Text PDF

Discovery of new indole-based tubulin polymerization inhibitors will continue to dominate the synthetic efforts of many medicinal chemists working in the field. The indole ring system is an essential part of several tubulin inhibitors identified in the recent years. The present review article will update the synthesis, anticancer and tubulin inhibition activities of several important new indole classes such as 2-phenylindoles (28, 29 & 30), oxindoles (35 & 38), indole-3-acrylamides (44), indolines (46), aroylindoles (49), carbozoles (75, 76 & 82), azacarbolines (87) and annulated indoles (100-105).

View Article and Find Full Text PDF

Cancer remains one of the unsolved diseases of today's advanced drug discovery world even though it is known to humans for centuries. There is continued effort to discover new chemotherapeutic agents to improve the outcome of cancer patients. Small-molecule agonists at tolllike receptor 7 and 8 (TLR7/8) have recently generated renewed interest in cancer research owing to their profound antitumoral activity.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a pleiotropic lipid signaling molecule associated with asthma pathobiology. LPA elicits its effects by binding to at least six known cell surface G protein-coupled receptors (LPA1-6) that are expressed in the lung in a cell type-specific manner. LPA2 in particular has emerged as an attractive therapeutic target in asthma because it appears to transduce inhibitory or cell-protective signals.

View Article and Find Full Text PDF

Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies.

View Article and Find Full Text PDF

Chromenes constitute chemically important class of heterocyclic compounds having diverse biological and chemical importance. Development of environmentally benign, efficient and economical methods for the synthesis of chromenes remains a significant challenge in synthetic chemistry. The synthesis of chromenes, therefore, has attracted enormous attention from medicinal and organic chemists.

View Article and Find Full Text PDF

Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonist of the type 2 G protein coupled receptor for lysophosphatidic acid (LPA2) 2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay of up to 72 hr reduced mortality of C57BL/6 mice but not LPA2 knockout mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

Glioma is a brain tumor that arises from glial cells or glial progenitor cells, and represents 80% of malignant brain tumor incidence in the United States. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor malignancy with fewer than 8% of patients with GBM surviving for more than 3 years. Over the past 10 years, despite improvement in diagnosis and therapies for cancer, the survival rate for high-grade glioma patients remains dismal.

View Article and Find Full Text PDF

Autotaxin (ATX), through its lysophospholipase D activity controls physiological levels of lysophosphatidic acid (LPA) in blood. ATX is overexpressed in multiple types of cancers, and together with LPA generated during platelet activation promotes skeletal metastasis of breast cancer. However, the pathophysiological sequelae of regulated interactions between circulating LPA, ATX, and platelets remain undefined in cancer.

View Article and Find Full Text PDF

Unlabelled: Autotaxin (ENPP2/ATX) and lysophosphatidic acid (LPA) receptors represent two key players in regulating cancer progression. The present study sought to understand the mechanistic role of LPA G protein-coupled receptors (GPCR), not only in the tumor cells but also in stromal cells of the tumor microenvironment. B16F10 melanoma cells predominantly express LPA5 and LPA2 receptors but lack LPA1.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a growth factor-like mediator and a ligand for multiple GPCR. The LPA2 GPCR mediates antiapoptotic and mucosal barrier-protective effects in the gut. We synthesized sulfamoyl benzoic acid (SBA) analogues that are the first specific agonists of LPA2, some with subnanomolar activity.

View Article and Find Full Text PDF

Purpose: Our objective was to synthesize LHRH-conjugated amphiphilic copolymer for micellar delivery of CBDIV17, a novel antiandrogen for treating prostate cancer.

Methods: LHRH-PEG-b-p(CB-co-LA) was synthesized by opening polymerization of carbonate (CB), lactide (LA), and HOOC-PEG-OH followed by conjugation with LHRH analogue. Bicalutamide analogue CBIDV17 loaded micelles were formulated by film hydration method, and characterized for critical micelle concentration (CMC), drug loading and in vitro drug release.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) continues to demand improved chemotherapeutic solutions. In order to discover novel chemotherapeutic agents for GBM, we identified novel tetrahydroisoquinoline (THI) analogs as antiglioma agents. The present study reports the design, synthesis and in vitro evaluation of new THI derivatives in four established human glioma cell lines (T98, U87, LN18 and A172).

View Article and Find Full Text PDF

Modulation of autotaxin (ATX), the lysophospholipase D enzyme that produces lysophosphatidic acid, with small-molecule inhibitors is a promising strategy for blocking the ATX-lysophosphatidic acid signaling axis. Although discovery campaigns have been successful in identifying ATX inhibitors, many of the reported inhibitors target the catalytic cleft of ATX. A recent study provided evidence for an additional inhibitory surface in the hydrophobic binding pocket of ATX, confirming prior studies that relied on enzyme kinetics and differential inhibition of substrates varying in size.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1-3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.

View Article and Find Full Text PDF

Cancer is a major devastating disease, and is a leading cause of death worldwide. Despite the progress in cancer treatment, cancer mortality rate remains high. Therefore, the discovery and development of improved anticancer drugs to treat cancer are needed.

View Article and Find Full Text PDF

Autotaxin (ATX), a lysophospholipase D, plays an important role in cancer invasion, metastasis, tumor progression, tumorigenesis, neuropathic pain, fibrotic diseases, cholestatic pruritus, lymphocyte homing, and thrombotic diseases by producing the lipid mediator lysophosphatidic acid (LPA). A high-throughput screen of ATX inhibition using the lysophosphatidylcholine-like substrate fluorogenic substrate 3 (FS-3) and ∼10,000 compounds from the University of Cincinnati Drug Discovery Center identified several small-molecule inhibitors with IC₅₀ vales ranging from nanomolar to low micromolar. The pharmacology of the three most potent compounds: 918013 (1; 2,4-dichloro-N-(3-fluorophenyl)-5-(4-morpholinylsulfonyl) benzamide), 931126 (2; 4-oxo-4-{2-[(5-phenoxy-1H-indol-2-yl)carbonyl]hydrazino}-N-(4-phenylbutan-2-yl)butanamide), and 966791 (3; N-(2,6-dimethylphenyl)-2-[N-(2-furylmethyl)(4-(1,2,3,4-tetraazolyl)phenyl)carbonylamino]-2-(4-hydroxy-3-methoxyphenyl) acetamide), were further characterized in enzyme, cellular, and whole animal models.

View Article and Find Full Text PDF
Article Synopsis
  • - Gliomas are highly malignant brain tumors with poor prognosis despite standard therapies; challenges include overcoming drug resistance, improving delivery, and developing effective screening methods.
  • - The review discusses key chemotherapeutic agents and innovative drug design approaches, alongside in vitro and in vivo screening for new drug candidates.
  • - Future research should focus on creating potent, targeted therapies for gliomas and glioma stem cells, while enhancing drug screening procedures to improve treatment outcomes.
View Article and Find Full Text PDF

Agents that interfere with tubulin function have a broad anti-tumor spectrum and they represent one of the most significant classes of anticancer agents. In the past few years, several small synthetic molecules that have an indole nucleus as a core structure have been identified as tubulin inhibitors. Among these, several aroylindoles, arylthioindoles, diarylindoles and indolylglyoxyamides have shown good inhibition towards the tubulin polymerization.

View Article and Find Full Text PDF