Publications by authors named "Renu Tomar"

We show that optical gain in 2D CdSe colloidal quantum wells (CQWs) shows little saturation and coexists with exciton absorption over a broad range of excitation densities, in stark contrast with 0D CdSe colloidal quantum dots (CQDs). In addition, we demonstrate that photoexcited CQWs can absorb or emit light through the thermodynamically driven formation or radiative recombination of singlet excitonic molecules. Invoking stimulated emission through the molecule-exciton transition, we can quantify all of the remarkable gain characteristics of CQWs using only experimentally determined parameters, an advance that highlights a fundamental difference between multiexcitons in CQWs and CQDs.

View Article and Find Full Text PDF

While the surface termination of quasi-spherical metal chalcogenide nanocrystals or quantum dots has been widely investigated, it remains unclear whether the ensuing surface chemistry models apply to similar nanocrystals with anisotropic shapes. In this work, we report on the surface-chemistry of 2D CdSe nanoplatelets, where we make use of an improved synthesis strategy that yields stable and aggregation free nanoplatelet suspensions with a photoluminescence quantum yield as high as 55%. We confirm that such nanoplatelets are enriched in Cd and, by means of H nuclear magnetic resonance spectroscopy, we show that the Cd-rich surface is terminated by X-type carboxylate ligands.

View Article and Find Full Text PDF

Efficiency of the quantum dots based solar cells relies on charge transfer at the interface and hence on the relative alignment of the energy levels between materials. Despite a high demand to obtain size specific band offsets, very few studies exist where meticulous methods like photoelectron spectroscopy are used. However, semiconductor charging during measurements could result in indirect and possibly inaccurate measurements due to shift in valence and conduction band position.

View Article and Find Full Text PDF