BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.
View Article and Find Full Text PDFMalformations of the brain are common and vary in severity, from negligible to potentially fatal. Their causes have not been fully elucidated. Here, we report pathogenic variants in the core protein-folding machinery TRiC/CCT in individuals with brain malformations, intellectual disability, and seizures.
View Article and Find Full Text PDFThe rate of discovery and increased understanding of genetic causes for neurodevelopmental disorders has peaked over the past decade. It is well recognised that some genes show marked variability in neuroradiological phenotypes, and inversely, some radiological phenotypes are associated with several different genetic conditions. However, some readily recognisable brain magnetic resonance imaging (MRI) patterns, especially in the context of corresponding associated clinical findings, should prompt consideration of a pathogenic variant in a specific gene or gene pathway.
View Article and Find Full Text PDFCSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear.
View Article and Find Full Text PDFUtilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected.
View Article and Find Full Text PDFPathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H () or SNF2L () ISWI-chromatin remodeling enzyme. Pathogenic variants in and were previously implicated in NDDs.
View Article and Find Full Text PDFThis scientific commentary refers to ‘Aquaporin-4 and GPRC5B: old and new players in controlling brain oedema’ by Passchier . (https://doi.org/10.
View Article and Find Full Text PDFPurpose: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder.
View Article and Find Full Text PDFNeural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1.
View Article and Find Full Text PDFPurpose: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD.
View Article and Find Full Text PDFOverlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes.
View Article and Find Full Text PDFTET3 encodes an essential dioxygenase involved in epigenetic regulation through DNA demethylation. TET3 deficiency, or Beck-Fahrner syndrome (BEFAHRS; MIM: 618798), is a recently described neurodevelopmental disorder of the DNA demethylation machinery with a nonspecific phenotype resembling other chromatin-modifying disorders, but inconsistent variant types and inheritance patterns pose diagnostic challenges. Given TET3's direct role in regulating 5-methylcytosine and recent identification of syndrome-specific DNA methylation profiles, we analyzed genome-wide DNA methylation in whole blood of TET3-deficient individuals and identified an episignature that distinguishes affected and unaffected individuals and those with mono-allelic and bi-allelic pathogenic variants.
View Article and Find Full Text PDFGrey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH).
View Article and Find Full Text PDFPOLR3B encodes the second-largest catalytic subunit of RNA polymerase III, an enzyme involved in transcription. Bi-allelic pathogenic variants in POLR3B are a well-established cause of hypomyelinating leukodystrophy. We describe six unrelated individuals with de novo missense variants in POLR3B and a clinical presentation substantially different from POLR3-related leukodystrophy.
View Article and Find Full Text PDFComplex I deficiency is the most common pediatric mitochondrial disease. It can cause a wide range of clinical disorders, including Leigh syndrome. TIMMDC1 encodes an assembly protein of complex I and has been recently associated with early onset mitochondrial disease in three unrelated families.
View Article and Find Full Text PDF