Objectives: Cutting-edge patient-specific surgical plates (PSSPs) are supposed to improve the efficiency, precision, and functional outcomes of mandibular reconstruction. This study characterized the premium role of PSSPs in precise surgery and explored their working principles in computer-assisted mandibular reconstruction (CAMR).
Methods: The PSSPs-enhanced surgical precision was investigated through the model surgery and representative cases.
Recent technological advancements and the evolution of industrial manufacturing paradigms have substantially increased the complexity of product-specific production systems. To reduce the time cost of modelling and verification and to enhance the degree of uniformity in the modelling process of system components, this article presents a componentised framework for domain modelling and performance analysis based on the concept of "multi-granularity and multi-view" for a production line of personalised and customised products, for plug-and-play manufacturing processes to involving a large number of model input parameters. The coloured Petri net tool is utilised as a simulation tool for mapping domain models to computational models for simulation and performance evaluation.
View Article and Find Full Text PDFBioengineering (Basel)
August 2022
Compared to conventional prostheses with homogenous structures, a stress-optimized functionally gradient prosthesis will better adapt to the host bone due to its mechanical and biological advantages. Therefore, this study aimed to investigate the damage resistance of four regular lattice scaffolds and proposed a new gradient algorithm for stabilized and lightweight mandibular prostheses. Scaffolds with four configurations (regular hexahedron, regular octahedron, rhombic dodecahedron, and body-centered cubic) having different porosities underwent finite element analysis to select an optimal unit cell.
View Article and Find Full Text PDFA porous material is considered to be a potential material that can be used to repair bone defects. However, the methods of designing of a highly porous structure within the allowable stress range remain to be researched. Therefore, this study was aimed at presenting a method for generating a three-dimensional tetrahedral porous structure characterized by low peak stress and high porosity for the reconstruction of mandibular defects.
View Article and Find Full Text PDF