Publications by authors named "Renshi Sawada"

The design and fabrication of a Micro-electromechanical Systems (MEMS)-based tilted microcoil on a polyimide capillary are reported in this paper, proposed for an electromagnetically-driven single-fiber endoscope scanner application. The parameters of the tilted microcoil were optimized by simulation. It is proved that the largest driving force could be achieved when the tilt-angle, the pitch and the coil turns of the designed microcoil were 60°, 80 µm and 20, respectively.

View Article and Find Full Text PDF

The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV) and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces-such as metal, paper, film, and so on-thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip.

View Article and Find Full Text PDF

Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology.

View Article and Find Full Text PDF

Background: Because the conventional evaluation of autonomic nervous system (ANS) function inevitably uses long-lasting uncomfortable electrocardiogram (ECG) recording, a more simplified and comfortable analysis system has been sought for this purpose. The feasibility of using a portable micro-electromechanical system (MEMS) blood flowmeter to analyze heart rate variability (HRV) for evaluating ANS function was thus examined.

Methods And Results: Measurements of the R-R interval (TRR) derived from an ECG, simultaneously with the pulse wave interval (TPP) derived from a MEMS blood flowmeter, in 8 healthy subjects was performed and resultant HRV variables in time and frequency domains were compared.

View Article and Find Full Text PDF

Here, we report the development of an integrated laser Doppler blood flow micrometer for chickens. This sensor weighs only 18 g and is one of the smallest-sized blood flow meters, with no wired line, these are features necessary for attaching the sensor to the chicken. The structure of the sensor chip consists of two silicon cavities with a photo diode and a laser diode, which was achieved using the microelectromechanical systems technique, resulting in its small size and significantly low power consumption.

View Article and Find Full Text PDF

Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers.

View Article and Find Full Text PDF

Objective: The objective of this study was to use non-invasive laser Doppler flowmeter to measure changes in blood flow in peripheral vessels in the legs before and after stress induced by leg elevation stress test and investigate correlations with the ankle-brachial pressure index (ABI).

Methods: Subjects included 28 patients over 20 years of age (mean, 73 years) who reported chiefly of leg symptoms such as intermittent claudication, numbness, chills, or cramps had been examined at the study institution, and agreed to participate in the study. The ABI of both legs was measured, and patients were divided into two groups: low ABI (ABI ≤0.

View Article and Find Full Text PDF

The authors propose a new sensor structure for an integrated laser Doppler blood flowmeter that consists of two silicon cavities with a PD and laser diode inside each cavity. A silicon lid formed with a converging microlens completes the package. This structure, which was achieved using micromachining techniques, features reduced optical power loss in the sensor, resulting in its small size and significantly low power consumption.

View Article and Find Full Text PDF

This paper describes a Fourier transform (FT) near-infrared spectrometer that uses an integrated prism scanning interferometer whose optical paths are stabilized by corner cubes. A combination of corner cubes and a retroreflection mirror, which is sometimes used in the conventional interferometer for FT spectrometers, is adopted and adapted to the integrated prism scanning interferometer through a special design. Without any degradation of spectroscopic properties, the optical path in the interferometer is highly stabilized and the moving distance of the stage is halved.

View Article and Find Full Text PDF