Environmental changes may alter gene expression in depression and anxiety disorders through epigenetic regulation, including via small non-coding RNAs (sncRNAs) and their major subclass, microRNAs (miRNAs). However, underlying mechanisms mediating miRNA regulation in response to changing environmental stimuli are unclear. Using the serotonin transporter (5-HTT) knockout (KO) mouse model of depression/anxiety, this study aimed to compare the effects of voluntary exercise (EX) versus chronic treatment with the stress hormone corticosterone (CT), on hippocampal miRNA transcriptome and proteome in five comparison groups: WT-SH vs.
View Article and Find Full Text PDFPsilocybin is a serotonergic psychedelic compound which shows promise for treating compulsive behaviours. This is particularly pertinent as compulsive disorders require research into new pharmacological treatment options as the current frontline treatments such as selective serotonin reuptake inhibitors, require chronic administration, have significant side effects, and leave almost half of the clinical population refractory to treatment. In this study, we investigated psilocybin administration in male and female SAPAP3 knockout (KO) mice, a well-validated mouse model of obsessive compulsive and related disorders.
View Article and Find Full Text PDFAttention deficits are frequently reported within the clinical autism population. Despite not being a core diagnostic feature, some aetiological theories place atypical attention at the centre of autism development. Drugs used to treat attention dysfunction are therefore increasingly prescribed to autistic patients, though currently off-label with uncertain efficacy.
View Article and Find Full Text PDFBackground: Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD.
View Article and Find Full Text PDFBackground: The interplay between environmental stress and genetic factors is thought to play an important role in the pathogenesis and maintenance of obsessive-compulsive disorder (OCD). However, the relative contribution of these causative antecedents in the manifestation of cognitive inflexibility-a phenotype often seen in obsessive-compulsive (OC)- spectrum disorders-is not fully understood.
Method: In this study, we treated mice with 50 mg/L corticosterone (CORT, a glucocorticoid stress hormone) in their drinking water during adolescence.
Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available.
View Article and Find Full Text PDFGlutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function.
View Article and Find Full Text PDFHuntington's disease is a fatal autosomal-dominant neurodegenerative disorder, characterized by neuronal cell dysfunction and loss, primarily in the striatum, cortex and hippocampus, causing motor, cognitive and psychiatric impairments. Unfortunately, no treatments are yet available to modify the progression of the disease. Recent evidence from Huntington's disease mouse models suggests that protein phosphorylation (catalysed by kinases and hydrolysed by phosphatases) might be dysregulated, making this major post-translational modification a potential area of interest to find novel therapeutic targets.
View Article and Find Full Text PDFIn Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic).
View Article and Find Full Text PDFHere, we present a protocol that allows comparison of the effects of the standard home cage, environmentally enriched home cage with additional super-enrichment, and the exercise (running wheels only) home cage in laboratory mice. We first describe the steps to assemble these three types of cages, respectively. We then detail the assembly of super-enrichment arenas, which provide additional stimulation beyond that provided by home-cage enrichment.
View Article and Find Full Text PDFDepressed individuals who carry the short allele for the serotonin-transporter-linked promotor region of the gene are more vulnerable to stress and have reduced response to first-line antidepressants such as selective serotonin reuptake inhibitors. Since depression severity has been reported to correlate with brain iron levels, the present study aimed to characterise the potential antidepressant properties of the iron chelator deferiprone. Using the serotonin transporter knock-out (5-HTT KO) mouse model, we assessed the behavioural effects of acute deferiprone on the Porsolt swim test (PST) and novelty-suppressed feeding test (NSFT).
View Article and Find Full Text PDFProtein phosphorylation plays a role in many important cellular functions such as cellular plasticity, gene expression, and intracellular trafficking. All of these are dysregulated in Huntington's disease (HD), a devastating neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene. However, no studies have yet found protein phosphorylation differences in preclinical HD mouse models.
View Article and Find Full Text PDFGut dysbiosis in Huntington's disease (HD) has recently been reported using microbiome profiling in R6/1 HD mice and replicated in clinical HD. In HD mice, environmental enrichment (EE) and exercise (EX) were shown to have therapeutic impacts on the brain and associated symptoms. We hypothesize that these housing interventions modulate the gut microbiome, configuring one of the mechanisms that mediate their therapeutic effects observed in HD.
View Article and Find Full Text PDFTubulin-associated unit (Tau) is a microtubule-associated protein, whose abnormal phosphorylation and deposition in the brain characterizes a range of neurodegenerative diseases called tauopathies. Recent clinical (post-mortem) and pre-clinical evidence suggests that Huntington's disease (HD), an autosomal dominant neurodegenerative disorder, could be considered as a tauopathy. Studies have found the presence of hyperphosphorylated tau, altered tau isoform ratio and aggregated tau in HD brains.
View Article and Find Full Text PDFDeficits in hippocampal cellular and synaptic plasticity are frequently associated with cognitive and mood disorders, and indeed common mechanisms of antidepressants are thought to involve neuroplastic processes. Here, we investigate hippocampal adult-born cell survival and synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in serotonin transporter (5-HTT) knockout (KO) mice. From 8 weeks of age, mice either continued in standard-housing conditions or were given access to voluntary running wheels for 1 month.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin gene. Transcriptomic dysregulations are well-documented in HD and alterations in small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), could underpin that phenomenon. Additionally, environmental enrichment (EE), which is used to model a stimulating lifestyle in pre-clinical research, has been shown to ameliorate HD-related symptoms.
View Article and Find Full Text PDFBackground: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages).
View Article and Find Full Text PDFSchizophrenia (SZ) is a psychiatric disorder that constitutes one of the top 10 global causes of disability. More recently, a potential pathogenic role for the gut microbial community (microbiota) has been highlighted, with numerous studies describing dysregulated microbial profiles in SZ patients when compared to healthy controls. However, no animal model of SZ has previously recapitulated the gut dysbiosis observed clinically.
View Article and Find Full Text PDFHuntington's disease (HD) is an extraordinary disorder that usually strikes when individuals are in the prime of their lives, as was the case for the influential 20th century musician Woody Guthrie. HD demonstrates the exceptionally fine line between life and death in such 'genetic diseases', as the only difference between those who suffer horribly and die slowly of this disease is often just a handful of extra tandem repeats (beyond the normal polymorphic range) in a genome that constitutes over 3 billion paired nucleotides of DNA. Furthermore, HD presents as a complex and heterogenous combination of psychiatric, cognitive and motor symptoms, so can appear as an unholy trinity of 'three disorders in one'.
View Article and Find Full Text PDF