Serology tests for SARS-CoV-2 provide a paradigm for estimating the number of individuals who have had an infection in the past (including cases that are not detected by routine testing, which has varied over the course of the pandemic and between jurisdictions). Such estimation is challenging in cases for which we only have limited serological data and do not take into account the uncertainty of the serology test. In this work, we provide a joint Bayesian model to improve the estimation of the sero-prevalence (the proportion of the population with SARS-CoV-2 antibodies) through integrating multiple sources of data, priors on the sensitivity and specificity of the serological test, and an effective epidemiological dynamics model.
View Article and Find Full Text PDFBackgroundMany countries have implemented population-wide interventions to control COVID-19, with varying extent and success. Many jurisdictions have moved to relax measures, while others have intensified efforts to reduce transmission.AimWe aimed to determine the time frame between a population-level change in COVID-19 measures and its impact on the number of cases.
View Article and Find Full Text PDF