Publications by authors named "Rennie M Kendrick"

The central amygdala (CEA) has been richly studied for interpreting function and behavior according to specific cell types and circuits. Such work has typically defined molecular cell types by classical inhibitory marker genes; consequently, whether marker-gene-defined cell types exhaustively cover the CEA and co-vary with connectivity remains unresolved. Here, we combined single-cell RNA sequencing, multiplexed fluorescent hybridization, immunohistochemistry, and long-range projection mapping to derive a "bottom-up" understanding of CEA cell types.

View Article and Find Full Text PDF

The claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions.

View Article and Find Full Text PDF

Elucidating the neural mechanisms of memory in the brain is a central goal of neuroscience. Here, we discuss modern-day transcriptomics methodologies, and how they are well-poised to revolutionize our insight into memory mechanisms at unprecedented resolution and throughput. Focusing on the hippocampus and amygdala, two regions extensively examined in memory research, we show how single-cell transcriptomics technologies have been leveraged to understand the naïve state of these brain regions.

View Article and Find Full Text PDF