The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate.
View Article and Find Full Text PDFThe central amygdala (CEA) has been richly studied for interpreting function and behavior according to specific cell types and circuits. Such work has typically defined molecular cell types by classical inhibitory marker genes; consequently, whether marker-gene-defined cell types exhaustively cover the CEA and co-vary with connectivity remains unresolved. Here, we combined single-cell RNA sequencing, multiplexed fluorescent hybridization, immunohistochemistry, and long-range projection mapping to derive a "bottom-up" understanding of CEA cell types.
View Article and Find Full Text PDFSignals emanating from chloroplasts influence nuclear gene expression, but roles of retrograde signals during chloroplast development are unclear. To address this gap, we analyzed transcriptomes of non-photosynthetic maize mutants and compared them to transcriptomes of stages of normal leaf development. The transcriptomes of two albino mutants lacking plastid ribosomes resembled transcriptomes at very early stages of normal leaf development, whereas the transcriptomes of two chlorotic mutants with thylakoid targeting or plastid transcription defects resembled those at a slightly later stage.
View Article and Find Full Text PDFThe claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions.
View Article and Find Full Text PDFElucidating the neural mechanisms of memory in the brain is a central goal of neuroscience. Here, we discuss modern-day transcriptomics methodologies, and how they are well-poised to revolutionize our insight into memory mechanisms at unprecedented resolution and throughput. Focusing on the hippocampus and amygdala, two regions extensively examined in memory research, we show how single-cell transcriptomics technologies have been leveraged to understand the naïve state of these brain regions.
View Article and Find Full Text PDF