Bladder cancer (BCa) is the 10th most prevalent cancer globally. Neoadjuvant therapy has become the standard treatment for muscle-invasive bladder cancer, yet the pathologic complete response rate for patients is only approximately 35%. However, the mechanisms underlying neoadjuvant therapy resistance in bladder cancer patients remain unclear.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
December 2024
Objective: To investigate the results of preimplantation genetic testing for monogenic diseases (PGT-M) in a Chinese pedigree affected with Primary carnitine deficiency (PCD).
Methods: A pedigree affected with PCD who visited Hainan Women and Children's Medical Center in April 2023 due to "SLC22A5 gene mutation found in offspring genetic testing and preparing for a second child" was selected as the study subject. Pathogenicity of the proband's variant sites was determined by referring to the Standards and Guidelines for the Interpretation of Sequence Variants established by the American College of Medical Genetics and Genomics (ACMG).
The problem of marine litter has caused significant threat to marine environment and human health, and has attracted wide attention. It is estimated that the weight of plastic waste in the oceans will exceed that of fish by 2050. Since a large part of marine debris originate from land-based domestic waste, developing relevant policies to manage the disposal of domestic garbage can effectively prevent and control marine litter pollution.
View Article and Find Full Text PDFBackground: Rice ECQ (eating and cooking quality) is an important determinant of rice consumption and market expansion. Therefore, improvement of ECQ is one of the primary goals in rice breeding. However, ECQ-related quantitative trait loci (QTL) have not yet been fully revealed.
View Article and Find Full Text PDFArbuscular mycorrhizal (AM) fungi are crucial components of the plant microbiota and can form symbioses with 72% of land plants. Researchers have long known that AM symbioses have dramatic effects on plant performance and also provide multiple ecological services in terrestrial environments. The successful establishment of AM symbioses relies on the host plant recognition of the diffusible mycorrhizal (Myc) factors, lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs).
View Article and Find Full Text PDFAntigen presentation by HLA class II molecules to CD4 T cells is an essential step for generating antibodies to hepatitis B antigens. In this study, we investigated the association between the HLA-DRB1 gene and the status of antibodies to hepatitis B surface and e antigens. Our results revealed a significant association between the status of anti-HBsAg and HLA-DRB1*04:03 (OR = 4.
View Article and Find Full Text PDFThe indica rice variety Huizhan shows elite traits of disease resistance and heat tolerance. However, the underlying genetic basis of these traits is not fully understood due to limited genomic resources. Here, we used Nanopore long-read and next-generation sequencing technologies to generate a chromosome-scale genome assembly of Huizhan.
View Article and Find Full Text PDFUranium is the most important fuel for nuclear power operations, and the safe supply of its resources is the key to the development of nuclear power in China. Because of the complex seawater environment and extremely low uranium concentration, extracting uranium from natural seawater poses a significant challenge. In this study, a polyamidoxime-phosphorylated cellulose nanofibril composite aerogel was prepared as an adsorbent for uranium extraction from seawater.
View Article and Find Full Text PDFFibrillated cellulose-based nanocomposites can improve energy efficiency of building envelopes, especially windows, but efficiently engineering them with a flexible ability of lighting and thermal management remains highly challenging. Herein, a scalable interfacial engineering strategy is developed to fabricate haze-tunable thermal barrier films tailored with phosphorylated cellulose nanofibrils (PCNFs). Clear films with an extremely low haze of 1.
View Article and Find Full Text PDFMetallic structures with hierarchical open pores that span several orders of magnitude are ideal candidates for various catalyst applications. However, porous metal materials prepared using alloy/dealloy methods still struggle to achieve continuous pore distribution across a broad size range. Herein, we report a printable copper (Cu)/iron (Fe) composite ink that produces a hierarchical porous Cu material with pores spanning over 4 orders of magnitude.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VO@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VO@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability ( = 490 μM, = 1.
View Article and Find Full Text PDFAntibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors.
View Article and Find Full Text PDFTo address electromagnetic interference (EMI) pollution in modern society, the development of ultrathin, high-performance, and highly stable EMI shielding materials is highly desired. Liquid metal (LM) based conductive materials have received enormous amounts of attention. However, the processing approach of LM/polymer composites represents great challenges due to the high surface tension and cohesive energy of LMs.
View Article and Find Full Text PDFUnlabelled: Meeting the ever-increasing food demands of a growing global population while ensuring resource and environmental sustainability presents significant challenges for agriculture worldwide. Arbuscular mycorrhizal symbiosis (AMS) has emerged as a potential solution by increasing the surface area of a plant's root system and enhancing the absorption of phosphorus, nitrogen nutrients, and water. Consequently, there is a longstanding hypothesis that rice varieties exhibiting more efficient AMS could yield higher outputs at reduced input costs, paving the way for the development of Green Super Rice (GSR).
View Article and Find Full Text PDFWe determined the genetic association between specific human leucocyte antigen (HLA) loci and autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. Our results showed that autoimmune GFAP astrocytopathy was associated with HLA-A*3303 (odds ratio [OR] = 2.02, 95% confidence interval [CI] = 1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2024
As the representative volatile chlorinated hydrocarbons detected in wastewater, the removal of composite chlorinated ethenes is a major challenge in wastewater treatment. In the present study, an efficient removal system for composite chlorinated ethenes was reported, in which gallic acid was used to enhance the activation of persulfate by Fe/Ni nanoparticles. The influences of gallic acid-Fe/Ni and persulfate concentrations, initial pH value, reaction temperature, inorganic anions, and natural organic matters were evaluated in the composite chlorinated ethenes removal.
View Article and Find Full Text PDF3D or 4D printing of metal structures requires extreme conditions or a multistage process. Here, we present a protocol for the preparation of highly conductive metallic composites using liquid metal gels at ambient conditions. We describe the steps to prepare ternary gels composed of copper particles, liquid metal, and water.
View Article and Find Full Text PDFTrichloroethylene (TCE) is an Environmental Protection Agency (EPA) priority pollutant that is difficult to be removed by some remediation methods. For instance, TCE removal using persulfate (PS) activated by ferrous iron (Fe(ii)) has been tested but is limited by the unstable Fe(ii) concentration and the initial pH of contaminated water samples. Here we reported a new TCE removal system, in which tannic acid (TA) promoted the activation of PS with Fe(ii) (TA-Fe(ii)-PS system).
View Article and Find Full Text PDFCellulose nanocrystals (CNC) are recognized as promising bio-based flocculants for controlling harmful algal blooms (HABs). Due to the charge shielding effect in seawater and the strong mobility of algae cells, CNC can't effectively remove Phaeocystis globosa from seawater. To solve this problem, peroxymonosulfate (PMS) was used to enhance the coagulation of CNC for rapidly removal of P.
View Article and Find Full Text PDFChloroform (CF) is a recalcitrant halogenated methane (HM) that has received widespread attention due to its frequent detection in groundwater and its potential carcinogenic risk. In this study, TEMPO-oxidized cellulose nanofiber-supported iron/copper bimetallic nanoparticles (TOCNF-Fe/Cu), a novel composite catalyst, was synthesized to activate sodium percarbonate (SPC) for the removal of CF from groundwater. The results showed that over 96.
View Article and Find Full Text PDFHydrogels, as a class of three-dimensional (3D) polymer networks, are important candidates for drug delivery owing to their high porosity and hydrophilicity. Generally, clinical applications put forward various requirements for drug delivery systems (DDSs), such as low toxic side effects, high biocompatibility, targeting, controllable release, and high drug loading. In recent years, nanocellulose, including cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs), has emerged as a promising material for hydrogel-based DDSs.
View Article and Find Full Text PDFThe rice root-knot nematode (Meloidogyne graminicola) is one of the most destructive pests threatening rice (Oryza sativa L.) production in Asia; however, no rice resistance genes have been cloned. Here, we demonstrate that M.
View Article and Find Full Text PDFWith increasing awareness about the ecological environment, increased attention has been paid to the application of eco-friendly materials in the field of marine antifouling. In this work, a novel coating having good mechanical strength and static marine antifouling characteristics was fabricated using cellulose nanocrystals (CNCs) as the skeleton material, with in situ growth of SiO as the basic superhydrophobic material and introducing hexadecyl trimethyl ammonium bromide (CTAB) and 4-bromo2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile (Econea) into the coating. Due to the high strength and rod structure of CNCs, the coating maintained super-hydrophobicity after 50 cycles of abrasion tests.
View Article and Find Full Text PDFOily sewage caused by oil spill accidents has become a severe problem in the last decades. Hence, two-dimensional sheet-like filter materials for oil/water separation have received widespread attention. Porous sponge materials were developed using cellulose nanocrystals (CNCs) as raw materials.
View Article and Find Full Text PDF