Persulfate-based advanced oxidation processes (PS-AOPs) are considered as efficient techniques for the degradation of contaminants, whereas the effective activation methods for reactive oxygen species (ROS) generation play vital roles in PS-AOPs. However, the internal electric field mediated activation methods, like introducing chemicals and materials, are often restricted by their intrinsic properties. Conversely, the introduction of external fields can provide extra energy to remarkably enhance the PS activation performance from outside, acting as an additional impetus to promote the cleavage of OO bond and thus improve the generation efficiency of ROS.
View Article and Find Full Text PDFGlyphosate is one of the most widely used pesticides globally. The environmental micro-molar hydrogen peroxide (HO)-driven Fenton reaction has been reported to degrade herbicides in natural water. However, the impact of micro-molar HO (50 μM) on the degradation of glyphosate in soil and glyphosate-degrading bacteria remains unclear.
View Article and Find Full Text PDFRecently, there has been increasing concern regarding the emergence of bisphenol S analogues (BPSs) due to their potential toxicity. However, their exposure levels and associated health risks in susceptible populations remain unknown. In our study, we analyzed bisphenol A (BPA), along with 11 common BPA analogues (BPAs), and nine emerging BPSs in urine samples collected from 381 pregnant women in South China.
View Article and Find Full Text PDFIn recent years, the toxic effects of microplastics (MPs) on aquatic organisms have been increasingly recognized. However, the developmental toxicity and underlying mechanisms of photoaged MPs at environmental concentrations remain unclear. Therefore, the photodegradation of pristine polystyrene (P-PS) under UV irradiation was used to investigate, as well as the developmental toxicity and underlying mechanisms of zebrafish (Danio rerio) exposed to P-PS and aged polystyrene (A-PS) at environmentally relevant concentrations (0.
View Article and Find Full Text PDFNeonicotinoids (NEOs) have indeed become the most widely used insecticides worldwide. Concerns have been raised about their potential impact on newborns due to maternal exposure and their unique neurotoxic mode of action. However, it is still poorly understood whether in utero exposure of pregnant women to environmental NEOs and their metabolites can cause carryover effects on vulnerable newborns and subsequent health consequences.
View Article and Find Full Text PDFGlyphosate is one of the most widely used herbicides globally, raising concerns about its potential impact on human health. Biomonitoring studies play a crucial role in assessing human exposure to glyphosate and providing valuable insights into its distribution and metabolism in the body. This review aims to summarize the current trends and future perspectives in biomonitoring of glyphosate and its major degradation product of aminomethylphosphonic acid (AMPA).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
September 2023
Emerging pesticides of neonicotinoids (NEOs) and "Universal Pesticides" (UPs) are a growing global concern due to their growing commercial importance and potential risks to human health. The currently available analytical methods for these pesticides in biomonitoring were usually tailored for limited number of analytes, or were time consuming and costly. In this study, an efficient and sensitive method for the analysis of 16 NEOs and nine UPs in human follicular fluid (FF) was developed by using a salting-out assisted liquid-liquid extraction (SALLE) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFThe use of neonicotinoid insecticides (NEOs) has been rising globally due to their broad-spectrum insecticidal activity, unique mode of neurotoxic action and presumed low mammalian toxicity. Given their growing ubiquity in the environment and neurological toxicity to non-target mammals, human exposure to NEOs is flourishing and now becomes a big issue. In the present work, we demonstrated that 20 NEOs and their metabolites have been reported in different human specimens with urine, blood and hair as the dominance.
View Article and Find Full Text PDFEmerging bisphenol S analogues (BPSs) have gained their application perspectives to replace bisphenol A (BPA) and BPA analogues (BPAs). However, the extent of human exposure and potential health risk from BPSs is rarely known yet. We hypothesized that children living in Shantou, China, a well-known e-waste recycling city, may expose to emerging BPSs together with BPA and BPAs.
View Article and Find Full Text PDFThe application of neonicotinoid insecticides (NEOs) has increased dramatically in the world since being introduced in 1990s, yet the extent of human exposure and potential health risk is not fully unraveled. In this study, the residues were analyzed of 16 NEOs and their metabolites in 205 commercial cow milk samples circulating in Chinese market. All the milk samples contained at least one quantified NEO, and over 90% of samples contained a cocktail of NEOs.
View Article and Find Full Text PDFBisphenol S (BPS) and its 11 emerging analogues were investigated in 325 urine samples from five occupational populations in South China. Besides BPS, ten emerging BPS analogues were newly identified and detected in the urine. It should be noted that urinary concentrations of dominant BPS analogues of 2,4'-bis(hydroxyphenyl)sulfone (2,4-BPS), bis(3-allyl-4-hydroxyphenyl)sulfone (TGSA) and diphenylsulfone (DPS) were 1.
View Article and Find Full Text PDFFluorinated liquid crystal monomers (LCMs) are begun to emerge as new persistent organic pollutants. Herein, the structure-reactivity relationships of fluorinated LCMs 1,2,3-trifluoro-5-[3-(3-propylcyclohexyl)cyclohexyl]benzene (TPrCB), 1,2-difluoro-4-[-4-(-4-propylcyclohexyl)cyclohexyl]benzene (DPrCB), 4-[(trans,trans)-4'-(3-Buten-1-yl)[1,1'-bicyclohexyl]-4-yl]-1,2-difluoro-benzene (BBDB) and 1-[4-(4-ethylcyclohexyl)cyclohexyl]-4(trifluoromethoxy)benzene (ECTB) subject to photocatalysis-generated oxidation species were investigated. The degradation rate constant of BBDB was 3.
View Article and Find Full Text PDFMagnetic porous water hyacinth-derived biochar (MPBC) was synthesized via two-step Microwave (MW)-assisted processes. Characterization results not only testified high specific surface area (2097.50 m/g) of the MPBC assisted by MW-assisted pyrolysis, but also revealed its favorable magnetism derived from MW-assisted hydrothermal process.
View Article and Find Full Text PDFTo investigate the effects of hydroxyl groups on the degradation of tetracycline antibiotics (TCs), three kinds of TCs [tetracycline (TC), oxytetracycline (OTC), and doxycycline (DTC)] were chosen as the target molecules and then degraded in the carbon black (CB)-activated peroxydisulfate (PDS) oxidation process. The degradation ratios of the TC, OTC, and DTC in the CB/PDS oxidation process reached 52%, 60%, and 87% within 40 min, respectively, with the degradation rate following the order of DTC > OTC > TC. According to the density functional theory calculations, these three TCs have different charge distributions, electrostatic potential distributions and average local ionization energy, which are caused by the distinct hydroxyl group position, thus contribute to the different degradation ratios and reaction rate constants.
View Article and Find Full Text PDFThe advantage of light-to-heat conversion can be employed as an optical alternative for environmental remediation. As a proof of concept, for the first time we introduce the light-to-heat conversion application in peroxydisulfate (PDS) activation by molybdenum disulphide (MoS) under near infrared (NIR) light irradiation. Theoretical kinetics analysis suggests that the reaction rates of PDS activation is increased up to 9.
View Article and Find Full Text PDFThe increasing concentration of nitroimidazoles antibiotics (NIs) in the water environment has great threat to human and ecosystem security. Herein, the degradation rates of four NIs were found to vary with their molecular structures using CoMn-layered double hydroxide (LDH) catalyzed peroxymonosulfate oxidation process. Specifically, the degradation efficiency of secnidazole (SNZ) was determined to be the highest with a reaction rate of 0.
View Article and Find Full Text PDFAdvanced oxidation processes (AOPs) based on heterogeneous catalytic activated peroxymonosulfate (PMS) have been becoming alternatives to conventional wastewater treatment technologies to directly degrade chemical contaminants. To build dual/multi redox cycles of different metal ions may be an effective means for better PMS activation. Herein, this study designed MnO/CuBiO with dual redox cycles of Mn(III)/Mn(IV) and Cu(I)/Cu(II) to activate PMS for efficiently decomposing and mineralizing diclofenac sodium (DCF).
View Article and Find Full Text PDFStructural Fe(III) is widely found in various coordination complexes and inorganic compounds. In this work, a typical Fe-based metal organic framework (MOF) (viz. MIL-100(Fe)) was chosen as an example in the activation of peroxydisulfate (PDS) for the removal of antibiotic pollutants.
View Article and Find Full Text PDFThe large consumption and discharge of sulfonamides (SAs) have potentially induced antibiotic resistance genes, posing inestimable threats to humans and ecosystems. In the present study, five SAs with different substituents were regarded as target compounds to be degraded using the nonradical dominated peroxydisulfate (PDS) activation process by the combination of O oxidation and direct electron transfer. The degradation rates, toxicities and pathways of SAs largely varied with their substituents.
View Article and Find Full Text PDFAntibiotics as emerging pharmaceutical pollutants have seriously not only threatened human life and animal health security, but also caused environmental pollution. It has drawn enormous attention and research interests in the study of antibiotics removal from aqueous environments. Graphene, an interesting one-atom-thick, 2D single-layer carbon sheet with sp hybridized carbon atoms, has become an important agent for removal of antibiotic, owing to its unique physiochemical properties.
View Article and Find Full Text PDFEthanol and lactate are considered suitable electron donors (EDs) for chain elongation (CE); however, their respective shortcomings still limit the substrate conversion ratio and medium chain fatty acid (MCFA) production. To address this limitation, different EDs and electron acceptors (EAs) were combined to compare their CE performances, and to investigate whether the combination of ethanol and lactate could further enhance the MCFA production based on the complementary characteristics of ethanol and lactate. The results verified, for the first time, ethanol and lactate as the co-EDs formed a cooperative relationship to largely promote the conversion of substrates into MCFA.
View Article and Find Full Text PDFIn this study, batch experiments were carried out to investigate the key factors on sulfamethoxazole (SMX) removal kinetics in a new AOPs based on the combination of zero valent iron (Fe) and bisulfite (S(IV)). With the increase of Fe from 0.25 mM to 5 mM, the removal rate of SMX was linearly increased in the Fe/S(IV)/O system by accelerating the activation of S(IV) and Fe corrosion to accelerate.
View Article and Find Full Text PDFA new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.
View Article and Find Full Text PDF