Oral radiotoxicity is often a limiting factor in cancer treatment. Previously, we demonstrated that transfer of cell-permeable, TAT-fusion Tousled-like kinase 1B (TLK1B) protein in salivary glands effectively mitigates radiation-induced salivary dysfunction. However, similar to most radioprotectors, TLK1B can carry the risk of limiting cancer treatment efficacy.
View Article and Find Full Text PDFBone is a unique tissue that has the ability to repair itself and return to full function. Bone regeneration is a well synchronized biological process that recapitulates embryonic bone development. The establishment of a functional vascular supply has been shown to be essential for proper ossification of newly deposited bone, and impaired angiogenesis as in advanced age, diabetes, and anti-cancer treatments affect bone repair.
View Article and Find Full Text PDFNormal tissues that lie within the portals of radiation are inadvertently damaged. Salivary glands are often injured during head and neck radiotherapy. Irreparable cell damage results in a chronic loss of salivary function that impairs basic oral activities, and increases the risk of oral infections and dental caries.
View Article and Find Full Text PDFMore than 0.5 million new cases of head and neck cancer are diagnosed worldwide each year, and approximately 75% of them are treated with radiation alone or in combination with other cancer treatments. A majority of patients treated with radiotherapy develop significant oral off-target effects because of the unavoidable irradiation of normal tissues.
View Article and Find Full Text PDF