The selective elimination of cytotoxic ROS while retaining essential ones is pivotal in the management of chronic inflammation. Co-occurring bacterial infection further complicates the conditions, necessitating precision and an efficacious treatment strategy. Herein, the dynamic ROS nanomodulators are rationally constructed through regulating the surface states of herbal carbon dots (CDs) for on-demand inflammation or infection elimination.
View Article and Find Full Text PDFThe metabolite transport inhibition of tumor cells holds promise to achieve anti-tumor efficacy. Herein, we presented an innovative strategy to hinder the delivery of metabolites through the in-situ besieging tumor cells with polyphenolic polymers that strongly adhere to the cytomembrane of tumor cells. Simultaneously, these polymers underwent self-crosslinking under the induction of tumor oxidative stress microenvironment to form an adhesive coating on the surface of the tumor cells.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has attracted wide attention in antibacterial applications due to its advantages of spatial-temporal selectivity, noninvasiveness, and low incidence to develop drug resistance. To make it more convenient, universal, and manipulatable for clinical application, a conceptually antibacterial strategy, namely "electroluminodynamic therapy" (ELDT), is presented by nanoassembly of an electroluminescent (EL) material and a photosensitizer, which is capable of generating reactive oxygen species (ROS) in situ under an electric field, i.e.
View Article and Find Full Text PDF