Current integration methods for single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data are typically designed for specific tasks, such as deconvolution of cell types or spatial distribution prediction of RNA transcripts. These methods usually only offer a partial analysis of ST data, neglecting the complex relationship between spatial expression patterns underlying cell-type specificity and intercellular cross-talk. Here, we present eMCI, an explainable multimodal correlation integration model based on deep neural network framework.
View Article and Find Full Text PDFBackground: Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is important but challenging to signal critical transitions in complex biosystems.
Methods: In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression in complex biological systems.
Proc Natl Acad Sci U S A
September 2023
Alerting for imminent earthquakes is particularly challenging due to the high nonlinearity and nonstationarity of geodynamical phenomena. In this study, based on spatiotemporal information (STI) transformation for high-dimensional real-time data, we developed a model-free framework, i.e.
View Article and Find Full Text PDF