Nanomaterials (Basel)
November 2024
The accumulation of greenhouse gasses (CH and CO) results in an increase in the temperature of the atmosphere. The conversion of greenhouse gasses into chemicals and fuels with high added value benefits not only the environment but also energy development. A promising and well-studied process is the reforming of methane, where CH and CO are converted into syngas (CO and H).
View Article and Find Full Text PDFTi-xZr (x = 5, 15, 25, 35, 45% wt%) alloys with low elastic modulus and high mechanical strength were fabricated as a novel implant material. The biocompatibility of the Ti-xZr alloys was evaluated by osteoblast-like cell line (MG63) in terms of cytotoxicity, proliferation, adhesion, and osteogenic induction using CCK-8 and live/dead cell assays, electron microscopy, and real-time PCR. The Ti-xZr alloys were non-toxic and showed superior biomechanics compared to commercially pure titanium (cpTi).
View Article and Find Full Text PDFThe aim of this study was to evaluate the biocompatibility and osteogenic potential of 50%Nb-Ti-Zr (NTZ,= 20%, 30%, 40% by weight) alloys as compared with dental commercial pure titanium (cpTi). Cell cytotoxicity assay, fluorescence microscopy and electron microscopy were used to measure thebiocompatibility of NTZ. The expression of alkaline phosphatase (ALP), integrin β1, osteocalcin (OC), Ki67 and collagen-I (Col-I) at the mRNA level was measured by real-time reverse transcription-polymerase chain reaction.
View Article and Find Full Text PDFTantalum (Ta) and zirconium (Zr) alloys were found to had low elastic modulus and similar biomechanical characteristics as the human bone. However, the biocompatibility and osteogenic potential of Ta-xZr alloyswith different proportions (20, 30, 40 and 50% Zr by atom) remains to be investigated. In this study, the biocompatibility of Ta-xZr alloys and commercially pure titanium (cpTi) was evaluated in vitro by cell counting kit-8 assay.
View Article and Find Full Text PDF