Publications by authors named "Rengarajan Venkatesan"

Great attempts have been done for the development of novel antiviral compounds against SAR-CoV-2 to end this pandemic situation and save human society. Herewith, we have synthesized 3-substituted indole/2-substituted pyrrole 1,2-dihydropyridine and azaxanthone scaffolds using simple, commercially available starting materials in a one-pot, green, and regioselective manner. Further, the regioselectivity of product formation was confirmed by various studies such as controlled experiments, density functional theory (DFT), Mulliken atomic charge, and electrostatic potential (ESP) surface.

View Article and Find Full Text PDF

From the array of small molecule organic fluorophores available as functional materials and in biology, synthetic procedures that allow for a simpler and rapid synthesis of organic fluorophores with desirable photophysical properties are in high demand. In addition, fluorophores with good brightness and tuneability in both solid and solution states are only available in certain numbers. Herein, we introduce a new family of pyrrolo[2,1-]isoindolylidene-malononitrile (PIYM) fluorophores that exhibit pronounced emission in the visible region in solution and red-NIR emission in the solid state, with tuneability, efficient brightness and stability.

View Article and Find Full Text PDF

A green and simple approach was developed for the regioselective synthesis of structurally diverse chromenopyrrole frameworks from 3-formylchromones, active methylenes, and α-azido ketones using piperidine as a catalyst in the aqueous medium through a tandem one-pot multicomponent reaction. Further, the synthesized pyrrole framework was successfully converted into biologically significant 6-azaindole derivatives in a simple synthetic transformation. An exciting feature of this synthetic protocol is that the reaction mechanism and formation of the products depend on the nature of the active methylene used.

View Article and Find Full Text PDF

Three layer-by-layer (LBL) assembled gold nanoparticles (AuNPs)/lower-generation (Gn≤3) polyamidoamine dendrimer (PD) with reduced graphene oxide (rGO) as the core/mercaptopropinoic acid (MPA)/Au were successfully fabricated and employed as electrochemical gene nanobiosensing platforms with three-dimensional (3D) fractal nanoarchitecture for fast, ultra-trace determination of label-free DNA hybridization. Three Gn≤3PD were initially grafted to graphite oxide (GO) via the covalent functionalization between amino terminals of PD and carboxyl terminals of GO where a concomitant reduction of GO, which were covalently linked onto MPA that was self-assembled onto Au substrate, and finally AuNPs were encapsulated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, Their morphologies, structures, electrochemical properties, and gene nanobiosensing performances were characterized and evaluated. AuNPs/GG2PD-based probe displayed the best excellent structural stability, lowest mobility on solid surface with the increasing charge resistance, widest linear range (1.

View Article and Find Full Text PDF

The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN)] as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 to 1 × 10 g m with a low detection limit of 9.

View Article and Find Full Text PDF

Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B.

View Article and Find Full Text PDF

Herein we report the covalent grafting of chitosan on graphene oxide (GO) followed by a simple approach for anchoring silver (AgNPs) and gold (AuNPs) nanoparticles onto a chitosan grafted graphene oxide surface by a NaBH4 reduction method. Catalytic activity of prepared heterogeneous GO grafted chitosan stabilized silver and gold nanocatalysts (GO-Chit-Ag/AuNPs) was explored for the reduction of aromatic nitroarenes and degradation of hazardous azo dyes in the presence of NaBH4. Both catalysts were found to exhibit excellent catalytic activity towards the reduction of aromatic nitroarenes and azo dyes degradation.

View Article and Find Full Text PDF