We investigate the nonlinear reflection of a light beam from a Kretschmann configuration with saturable absorbing medium. The absorption of medium has direct influence on the intrinsic loss of the system, thus affecting the reflectivity and the phase variation when the surface plasmons are resonantly excited. As the incident power changes, the reflectivity can be switched between high and low values and exhibits absorptive optical bistability as a result of the inherent positive feedback by the intensity-dependent saturation effect.
View Article and Find Full Text PDFWe present a scheme for enhancing Goos-Hänchen shift of light beam that is reflected from a coherent atomic medium in the Kretschmann-Raether configuration. The complex permittivity of the medium can be coherently controlled and has significant influence on the surface plasmon resonance (SPR) at the metal-medium interface. By tuning the atomic absorption, the internal damping of SPR system can be modulated effectively, thereby leading to giant positive and negative lateral displacements.
View Article and Find Full Text PDFA coherently prepared asymmetric double semiconductor quantum well (QW) is proposed to realize parity-time (PT) symmetry. By appropriately tuning the laser fields and the pertinent QW parameters, PT-symmetric optical potentials are obtained by three different methods. Such a coherent QW system is reconfigurable and controllable, and it can generate new approaches of theoretically and experimentally studying PT-symmetric phenomena.
View Article and Find Full Text PDFAn asymmetric double semiconductor quantum well is proposed to realize two-dimensional parity-time (PT) symmetry and an electromagnetically induced grating. In such a nontrivial grating with PT symmetry, the incident probe photons can be diffracted to selected angles depending on the spatial relationship of the real and imaginary parts of the refractive index. Such results are due to the interference mechanism between the amplitude and phase of the grating and can be manipulated by the probe detuning, modulation amplitudes of the standing wave fields, and interaction length of the medium.
View Article and Find Full Text PDFMetasurfaces are investigated intensively for biophotonics applications due to their resonant wavelength flexibly tuned in the near infrared region specially matching biological tissues. Here, we present numerically a metasurface structure combining dielectric resonance with surface plasmon mode of a metal plane, which is a perfect absorber with a narrow linewidth 10 nm wide and quality factor 120 in the near infrared regime. As a sensor, its bulk sensitivity and bulk figure of merit reach respectively 840 nm/RIU and 84/RIU, while its surface sensitivity and surface figure of merit are respectively 1 and 0.
View Article and Find Full Text PDFWe propose a scheme for a beam splitter and a beam router via an electromagnetically induced blazed grating in a four-level double-Λ system driven by an intensity-modulated coupling field and an incoherent pump field. The blazed grating relies on the incoherent pump process, which helps in inducing large refractivity with suppressed absorption or even gain. Consequently, the weak probe beam can be effectively deflected with high diffraction efficiency, and, meanwhile, its energy is amplified.
View Article and Find Full Text PDFCircular dichroism (CD) and asymmetric transmission (AT) are important in the field of negative refractive index media and perfect polarization converters. A large difference between T and T in the transmission matrix T leads to a large CD effect, whereas a large difference between T and T leads to a large AT effect. To achieve large CD and AT effects simultaneously, we theoretically analyzed the transmission matrix T and proposed the chiral plasmonic nanostructure of twist nanoslit-nanorod arrays (TNNAs) in this study.
View Article and Find Full Text PDFWe propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained.
View Article and Find Full Text PDFOpt Express
November 2015
We have investigated numerically the narrowband absorption property of a metal-dielectric-metal based structure which includes a top metallic nanoring arrays, a metal backed plate, and a middle dielectric spacer. Its absorption is up to 90% with linewidth narrower than 10 nm. This can be explained in terms of surface lattice resonance of the periodic structure.
View Article and Find Full Text PDFA novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer.
View Article and Find Full Text PDFRecently, a two-color quantum ghost imaging configuration was proposed by Karmakar et al. [Phys. Rev.
View Article and Find Full Text PDFWe propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom.
View Article and Find Full Text PDFWe analyze the optical response of a standing-wave driven four-level atomic system with double dark resonances. Fully developed double photonic band gaps arise as a result of periodically modulated refractive index within the two electromagnetically induced transparency widows. We anticipate that the dynamically induced band gaps can be used to coherently control the propagation of light-pulses with different center frequencies and may have applications in all-optical switching and routing for quantum information networks.
View Article and Find Full Text PDFWe theoretically study the transmission and reflection of the probe travelling wave in an electromagnetically induced absorption grating (EIG), which is created in a three-level Lambda-type atomic system when the coupling field is a standing wave. Using the system, we show that a photonic stop band can exist on one side away from the resonance point in ultracold atomic gas, while there is an enhanced absorption at resonance and small reflection around it in the thermal atomic gas. Because our method can deal with such two cases, it is helpful to further understand the effects of the Doppler effect on atomic coherence and interference.
View Article and Find Full Text PDF