Publications by authors named "Rengan A"

Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. We cover the progress in the last 2 decades on the classification and isolation of EVs and their role in DED.

View Article and Find Full Text PDF

Photothermal therapy (PTT) and photodynamic therapy (PDT) have been emerging as potential alternatives to conventional cancer treatment modalities. Gold nanoparticles, owing to their surface plasmon resonance properties, have been promising in cancer phototherapies, and extracts from potentially medicinal plants are commonly employed for the green synthesis of various nanoparticles. Some researchers also have been using chlorophyll as the photosensitizer for reactive oxygen species (ROS) generation.

View Article and Find Full Text PDF

Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is known for its aggressive nature, typically presenting as high-grade tumors that grow and spread quickly in all breast cancer types. Several studies have reported a strong correlation between cancer and microbial infections due to a compromised immune system. The most frequent infection associated with surface malignancies, including breast cancer, is Candidiasis, which is majorly caused by .

View Article and Find Full Text PDF

The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility.

View Article and Find Full Text PDF

The development of active therapeutic agents to treat highly metastatic cancer while minimizing damage to healthy cells is of utmost importance. Due to potential antioxidant properties, hydroxycinnamic acid derivatives (caffeic acid and -coumaric acids) were found to inhibit highly metastatic breast cancer cell growth both and without much effect on normal cells. Especially due to the structure-activity relationships, ester and amide derivatives of hydroxycinnamic acids are reported to gain much higher radical scavenging ability than their naked hydroxycinnamic acid analogs like caffeic acid and -coumaric acid.

View Article and Find Full Text PDF

Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution.

View Article and Find Full Text PDF

The transformation of metabolites into amyloidogenic aggregates represent an intriguing dimension in the pathophysiology of metabolic disorders, including alkaptonuria, canavan disease, and isovaleric acidemia. Central to this phenomenon are the metabolites homogentisic acid (HA), N-acetyl aspartic acid (NAA), and isovaleric acid (IVA), which we found, weave an intricate network of self-assembled structures. Leveraging an array of microscopy techniques, we traced the morphological behavior of these assemblies that exhibit concentration and time-dependent morphological transitions from isolated globules to clustered aggregates.

View Article and Find Full Text PDF

L-Arginine (LA), a semi-essential amino acid in the human body, holds significant potential in cancer therapy due to its ability to generate nitric oxide (NO) continuously in the presence of inducible NO synthase (iNOS) or reactive oxygen species (ROS). However, the efficiency of NO production in tumor tissue is severely constrained by the hypoxic and HO-deficient tumor microenvironment (TME). To address this issue, we have developed calcium peroxide (CaO) nanoparticles capable of supplying O/HO, which encapsulate and oxidize an LA-modified lipid bilayer to enable controlled localized NO generation in the presence of ROS, synergising with a ferroptosis inducer, RSL-3 (CPIR NPs).

View Article and Find Full Text PDF
Article Synopsis
  • Cancer is intricate and varies in response to treatments, leading to ineffective single therapies and tumor resistance, hence the need for combined approaches like chemo-photothermal therapy.
  • This study focuses on developing BaSO nanoparticles coated with PAA-TEG, which improves their solubility and effectiveness, and combines these with a therapeutic drug and photosensitizer for enhanced cancer treatment.
  • The novel nanocomposites showed superior anticancer effects compared to cisplatin by inducing reactive oxygen species and cell damage, making them promising for advanced lung cancer therapies and imaging techniques.
View Article and Find Full Text PDF

Near-infrared (NIR) phototherapies offer noninvasive, cost-effective solutions for treating tumors and microbial infections. However, organic NIR dyes commonly used suffer from solubility and stability issues requiring frequent dosing. We address this challenge by exploring the bacteriophage-mediated enhancement of NIR dye properties.

View Article and Find Full Text PDF

Melanoma is one of the most aggressive and fatal skin cancers owing to its ability to metastasize and develop resistance to chemotherapy. Photodynamic therapy (PDT) is a minimally noninvasive treatment modality comprising photosensitizers (PSs), light sources, and endogenous molecular oxygen that exert a localized cytotoxic effect on cancer cells. The current study explores the therapeutic potential of sodium copper chlorophyllin-loaded chitosan nanoparticles (CH-SCC NPs) along with handheld laser-based PDT on B16 cancer cells.

View Article and Find Full Text PDF

Infectious diabetic wounds present a substantial challenge, characterized by inflammation, infection, and delayed wound healing, leading to elevated morbidity and mortality rates. In this work, we developed a multifunctional lipid nanoemulsion containing quercetin, chlorine e6, and rosemary oil (QCRLNEs) for dual anti-inflammatory and antibacterial photodynamic therapy (APDT) for treating infectious diabetic wounds. The QCRLNEs exhibited spherical morphology with a size of 51 nm with enhanced encapsulation efficiency, skin permeation, and localized delivery at the infected wound site.

View Article and Find Full Text PDF

Metallic nanoparticles are promising candidates for anticancer therapies. Among the different metallic systems studied, copper is an affordable and biologically available metal with a high redox potential. Copper-based nanoparticles are widely used in anticancer studies owing to their ability to react with intracellular glutathione (GSH) to induce a Fenton-like reaction.

View Article and Find Full Text PDF

The 3D cancer models fill the discovery gap of 2D cancer models and play an important role in cancer research. In addition to cancer cells, a range of other factors include the stroma, density and composition of extracellular matrix, cancer-associated immune cells (e.g.

View Article and Find Full Text PDF

Herein, we report a novel flavin analogue as singular chemical component for lysosome bioimaging, and inherited photosensitizer capability of the flavin core was demonstrated as a promising candidate for photodynamic therapy (PDT) application. Fine-tuning the flavin core with the incorporation of methoxy naphthyl appendage provides an appropriate chemical design, thereby offering photostability, selectivity, and lysosomal colocalization, along with the aggregation-induced emissive nature, making it suitable for lysosomal bioimaging applications. Additionally, photosensitization capability of the flavin core with photostable nature of the synthesized analogue has shown remarkable capacity for generating reactive oxygen species (ROS) within cells, making it a promising candidate for photodynamic therapy (PDT) application.

View Article and Find Full Text PDF

Chemo-photothermal therapy (PTT) is an emerging non-invasive cancer treatment modality. Light-responsive porphysomes (DPP IR Mtx @Lipo NPs) nanosystems ablate breast cancer cells upon oxidative stress and hyperthermia. The unique self-assembled porphysomes were formed spherical shape in the size range of 150 ± 30 nm formed by the co-assembly of porphyrins along with IR 775 and chemotherapeutic drug, Mitoxantrone (Mtx), forming a camouflaged nanosystem (DPP IR Mtx @Lipo NPs, porphysomes).

View Article and Find Full Text PDF

The aggregation of amino acids into amyloid-like structures is a critical phenomenon for understanding the pathophysiology of various diseases, including inborn errors of metabolism (IEMs) associated with amino acid imbalances. Previous studies have primarily focused on self-assembly of aromatic amino acids, leading to a limited understanding of nonaromatic, polar amino acids in this context. To bridge this gap, our study investigates the self-assembly and aggregation behavior of specific nonaromatic charged and uncharged polar amino acids l-glutamine (Gln), l-aspartic acid (Asp), and l-glutamic acid (Glu), which have not been reported widely in the context of amyloid aggregation.

View Article and Find Full Text PDF

A 67-year-old woman with no known risk factors for coronary artery disease presented to the outpatient department with complaints of exertional fatigue and angina New York Heart Association class III.

View Article and Find Full Text PDF

Cancer represents a complex disease category defined by the unregulated proliferation and dissemination of anomalous cells within the human body. According to the GLOBOCAN 2020 report, the year 2020 witnessed the diagnosis of approximately 19.3 million new cases of cancer and 10.

View Article and Find Full Text PDF

Melanoma is one of the most aggressive and lethal types of cancer owing to its metastatic propensity and chemoresistance property. An alternative therapeutic option is photodynamic and photothermal therapies (PDT/PTT), which employ near-infrared (NIR) light to generate heat and reactive oxygen species (ROS). As per previous reports, Melanin (Mel), and its synthetic analogs (i.

View Article and Find Full Text PDF

In the current research, dye-embedded polylactic acid (PLA) conjugate materials were synthesized using one-pot ring-opening polymerization (ROP), i.e., (dtHP) (2-[(2,4,6-trimethylphenyl) imino]-1(2)-acenaphthylenone-reduced-PLA) and (dmHP) (monoiminoacenaphtheneone-reduced-PLA), and then, nanoparticles (NPs) were engineered in the size range of 150 ± 30 nm.

View Article and Find Full Text PDF

In 2020, approximately 10 million deaths worldwide were attributed to cancer, making it the primary cause of death globally. Photothermal therapy (PTT) is one of the novel ways to treat and abolish cancer. PTT significantly impacts cancer theranostics compared to other therapies like surgery, chemotherapy, and radiotherapy due to its remarkable binding capability to tumor sites and lower invasiveness into normal healthy tissues.

View Article and Find Full Text PDF

Cancer metastasis plays a major role in failure of therapeutic avenues against cancer. Owing to metastasis, nearly 70-80% of stage IV breast cancer patients lose their lives. Nanodrug delivery systems are playing a critical role in the therapy of metastatic cancer in the recent times.

View Article and Find Full Text PDF

The rapid metastasis & heterogenic constitution of triple negative breast cancer (TNBC) limits drug entry to the tumor, reducing treatment effectiveness. To address this, we have synthesized Casein nanoparticles (Cn NPs) with attached glutathione (GSH), a natural ligand for cancer cell overexpressed γ-glutamyl transpeptidase (GGT). Cn NPs encapsulated with Camptothecin and NIR dye IR 797 (CCN NPs) for combinatorial therapy of TNBC.

View Article and Find Full Text PDF