In vitro electrophysiological techniques for the assessment of neurotoxicity could have several advantages over other methods in current use, including the ability to detect damage at a very early stage, and could further assist in replacing animal experimentation in vivo. We investigated how an electrophysiological parameter, the extracellularly-recorded compound action potential ("population spike", PS) could be used as a marker of in vitro neurotoxicity in the case of two well-known toxic compounds, kainic acid (KA) and trimethyltin (TMT). We compared the use of this electrophysiological endpoint with changes in immunoreactivity for microtubule-associated protein 2 (MAP2), a standard histological test for neurotoxicity.
View Article and Find Full Text PDF