The tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication.
View Article and Find Full Text PDFis a eukaryotic parasite that has evolved a stage called tachyzoite which multiplies in host cells by producing two daughter cells internally. These nascent tachyzoites bud off their mother and repeat the division process until the expanding progenies escape to settle and multiply in other host cells. Over these intra- and extra-cellular phases, the tachyzoite maintains an essential apicobasal polarity that emerges through a unique bidirectional budding process of the elongating cells.
View Article and Find Full Text PDFFrancisella tularensis is one of the most virulent pathogenic bacteria causing the acute human respiratory disease tularemia. While the mechanisms underlying F. tularensis pathogenesis are largely unknown, previous studies have shown that a F.
View Article and Find Full Text PDFResponsible for tularemia, bacteria are highly infectious Gram-negative, category A bioterrorism agents. The molecular mechanisms for their virulence and resistance to antibiotics remain largely unknown. FupA (Fer Utilization Protein), a protein mediating high-affinity transport of ferrous iron across the outer membrane, is associated with both.
View Article and Find Full Text PDFAmong the eukaryotic cells that navigate through fully developed metazoan tissues, protozoans from the Apicomplexa phylum have evolved motile developmental stages that move much faster than the fastest crawling cells owing to a peculiar substrate-dependent type of motility, known as gliding. Best-studied models are the sporozoite and the tachyzoite polarized cells for which motility is vital to achieve their developmental programs in the metazoan hosts. The gliding machinery is shared between the two parasites and is largely characterized.
View Article and Find Full Text PDFBiofilms are currently considered as a predominant lifestyle of many bacteria in nature. While they promote survival of microbes, biofilms also potentially increase the threats to animal and public health in case of pathogenic species. They not only facilitate bacteria transmission and persistence, but also promote spreading of antibiotic resistance leading to chronic infections.
View Article and Find Full Text PDFis the causative agent in tularemia for which the high prevalence of treatment failure and relapse is a major concern. Directed-evolution experiments revealed that acquisition of fluoroquinolone (FQ) resistance was linked to factors in addition to mutations in DNA gyrase. Here, using live vaccine strain (LVS) as a model, we demonstrated that FupA/B (Fer-Utilization Protein) expression is linked to FQ susceptibility, and that the virulent strain subsp.
View Article and Find Full Text PDFis a Gram-negative bacterium causing tularaemia. Classified as possible bioterrorism agent, it may be transmitted to humans via animal infection or inhalation leading to severe pneumonia. Its virulence is related to iron homeostasis involving siderophore biosynthesis directly controlled at the transcription level by the ferric uptake regulator Fur, as presented here together with the first crystal structure of the tetrameric Fur in the presence of its physiological cofactor, Fe.
View Article and Find Full Text PDFFluoroquinolones (FQs) are highly effective for treating tularaemia, a zoonosis caused by Francisella tularensis, but failures and relapses remain common in patients with treatment delay or immunocompromised status. FQ-resistant strains of F. tularensis harboring mutations in the quinolone-resistance determining region (QRDR) of gyrA and gyrB, the genes encoding subunits A and B of DNA gyrase, have been selected in vitro.
View Article and Find Full Text PDFFoamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells.
View Article and Find Full Text PDFBackground: Proximal tubular dysfunction (PTD) is associated with a decreased long-term graft survival in renal transplant patients and can be detected by the elevation of urinary tubular proteins. This study investigated transcriptional changes in biopsies from renal transplant patients with PTD to disclose molecular mechanisms underlying graft injury and functional recovery.
Methods: Thirty-three renal transplant patients with high urinary levels of retinol-binding protein, a biomarker of PTD, were enrolled in the study.
The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer.
View Article and Find Full Text PDFIschemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment.
View Article and Find Full Text PDFHIV-1 employs its structural proteins to orchestrate assembly and budding at the plasma membrane of host cells, which depends on numerous cellular factors. Although cells evolved interferon inducible restriction factors such as tetherin that act as a first line of defense, enveloped viruses, including HIV-1, developed countermeasures in the form of tetherin antagonists such as Vpu that decrease the effect of tetherin and permits normal viral replication in vivo. Here we review recent advances in the understanding of the dynamic structural properties of tetherin that provide the basis to physically retain HIV-1 by bridging plasma and virion membranes after completion of budding.
View Article and Find Full Text PDFTetherin is an unusual surface glycoprotein that employs an N-terminal and a C-terminal region to anchor the protein into membranes. Structural analyses revealed an elongated structure for the ectodomain that is probably oriented parallel to cellular membranes. Expression of tetherin can be induced by interferon in selected cell types, which leads to the restriction of HIV-1 replication in the absence of the viral antagonist Vpu.
View Article and Find Full Text PDFBackground: The phylum Crenarchaeota lacks the FtsZ cell division hallmark of bacteria and employs instead Cdv proteins. While CdvB and CdvC are homologues of the eukaryotic ESCRT-III and Vps4 proteins, implicated in membrane fission processes during multivesicular body biogenesis, cytokinesis and budding of some enveloped viruses, little is known about the structure and function of CdvA. Here, we report the biochemical and biophysical characterization of the three Cdv proteins from the hyperthermophilic archaeon Metallospherae sedula.
View Article and Find Full Text PDFBackground: Rickettsia prowazekii is the etiological agent of epidemic typhus and is an obligate intracellular bacterium that grows as a parasite freely within the cytoplasm of a eukaryotic host cell. Previous studies have shown that rOmpA and rOmpB which belong to the family of rickettsial cell surface antigens are involved in vitro in the adhesion of Rickettsiae to epithelial cells. Recently, two putative rickettsial adhesins have been identified using high resolution 2D-PAGE coupled with mass spectrometry.
View Article and Find Full Text PDFThe restriction factor BST-2/tetherin contains two membrane anchors employed to retain some enveloped viruses, including HIV-1 tethered to the plasma membrane in the absence of virus-encoded antagonists. The 2.77 A crystal structure of the BST-2/tetherin extracellular core presented here reveals a parallel 90 A long disulfide-linked coiled-coil domain, while the complete extracellular domain forms an extended 170 A long rod-like structure based on small-angle X-ray scattering data.
View Article and Find Full Text PDFOne century after the first description of rickettsiae as human pathogens, the rickettsiosis remained poorly understood diseases. These microorganisms are indeed characterized by a strictly intracellular location which has, for long, prohibited their detailed study. Within the last ten years, the completion of the genome sequences of several strains allowed gaining a better knowledge about the molecular mechanisms involved in rickettsia pathogenicity.
View Article and Find Full Text PDFBackground: The Rickettsia genus includes 25 validated species, 17 of which are proven human pathogens. Among these, the pathogenicity varies greatly, from the highly virulent R. prowazekii, which causes epidemic typhus and kills its arthropod host, to the mild pathogen R.
View Article and Find Full Text PDFBackground: Tropheryma whipplei is a bacterium commonly found in people with Whipple's disease, a rare systemic chronic infection. In the present study, we hypothesized that bacterium glycosylation may impair the immune response.
Methods: Bacterial extracts were analyzed by glycostaining, and reactive proteins, identified by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectometry, were purified to generate antibodies that could be used in immunofluorescence studies.
Background: Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii.
View Article and Find Full Text PDF