The 18 kDa translocator protein (TSPO) is a target for the development of imaging agents to detect neuroinflammation. The clinical utility of second-generation TSPO ligands has been hindered by the presence of a polymorphism, rs6971, which causes a non-conservative substitution of alanine for threonine at amino acid residue 147 (TSPO A147T). Given the complex nature of TSPO binding, and the lack of non-discriminating high-affinity ligands at both wild type and A147T forms of TSPO, a series of novel TSPO ligands containing various heterocyclic scaffolds was developed to explore the pharmacophoric drivers of affinity loss at TSPO A147T.
View Article and Find Full Text PDFDevelopment of neuroinflammation agents targeting the translocator protein (TSPO) has been hindered by a common single nucleotide polymorphism (A147T) at which TSPO ligands commonly lose affinity. To this end, carbazole acetamide scaffolds were synthesized and structure activity relationships elaborated to explore the requirements for high-affinity binding to both TSPO wild type (WT) and the polymorphic TSPO A147T. This study reports high binding affinity and nondiscriminating TSPO ligands.
View Article and Find Full Text PDFThe 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation. Clinical translation of TSPO imaging agents has been hindered by the presence of a polymorphism, rs6971, which causes a non-conservative substitution of alanine for threonine at amino acid residue 147 (TSPO A147T). Disclosed brain-permeant second-generation TSPO ligands bind TSPO A147T with reduced affinity compared to the wild type protein (TSPO WT).
View Article and Find Full Text PDFThe 18kDa translocator protein (TSPO) is a target for novel glioblastoma therapies due to its upregulation in this cancer and relatively low levels of expression in the healthy cortex. The pyrazolo[1,5-a]pyrimidine acetamides, exemplified by DPA-713 and DPA-714, are a class of high affinity TSPO ligands with selectivity over the central benzodiazepine receptor. In this study we have explored the potential anti-glioblastoma activity of a library of DPA-713 and DPA-714 analogues, and investigated the effect of amending the alkyl ether chain on TSPO affinity and functional potential.
View Article and Find Full Text PDF