Polychlorinated biphenyls (PCBs) are enduring environmental toxicants and exposure is associated with neurodevelopmental deficits. The auditory system appears particularly sensitive, as previous work has shown that developmental PCB exposure causes both hearing loss and gross disruptions in the organization of the rat auditory cortex. However, the mechanisms underlying PCB-induced changes are not known, nor is it known whether the central effects of PCBs are a consequence of peripheral hearing loss.
View Article and Find Full Text PDFDevelopmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat.
View Article and Find Full Text PDFDevelopmental exposure of rats to polychlorinated biphenyls (PCBs) causes impairments in hearing and in the functioning of peripheral and central auditory structures. Additionally, recent work from our laboratory has demonstrated an increase in audiogenic seizures. The current study aimed to further characterize the effects of PCBs on auditory brain structures by investigating whether developmental exposure altered the magnitude of activation in the auditory cortex (AC) in response to electrical stimulation of thalamocortical afferents.
View Article and Find Full Text PDFBisphenol A (BPA), an endocrine disruptor used in a variety of consumer products, has been found to alter the number of neurons in multiple brain areas in rats following exposure in perinatal development. Both the number of neurons and glia also change in the medial prefrontal cortex (mPFC) during adolescence, and this process is known to be influenced by gonadal hormones which could be altered by BPA. In the current study, we examined Long-Evans male and female rats that were administered BPA (0, 4, 40, or 400μg/kg/day) during adolescent development (postnatal days 27-46).
View Article and Find Full Text PDFPreviously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect.
View Article and Find Full Text PDFThe human prefrontal cortex, important for executive functions, loses gray matter throughout the adolescent period. In rats, our laboratory demonstrated that a loss of neurons between adolescence and adulthood partially underlies the loss of volume, and this loss is greater in females than males. Here, we examine whether being deprived of gonadal hormones before puberty through adulthood influences the number of neurons in the medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFDevelopmental exposure to polychlorinated biphenyls (PCBs) causes auditory deficits. Thus, we recently conducted a study to investigate if developmental PCB exposure would exacerbate noise-induced hearing loss in adulthood. Unexpectedly, some PCB-exposed rats exhibited seizure-like behaviors when exposed to loud noise.
View Article and Find Full Text PDFPrevious work has shown that exposure to bisphenol A (BPA) can affect anxiety behavior. However, no studies have examined whether administration of this endocrine disruptor during the perinatal period has the potential to induce alterations in cognitive behavior in both adult males and females as assessed in an appetitive task. The goal of the current study was to determine whether exposure to different doses of BPA during early development alters performance on the 17-arm radial maze in adulthood in Long-Evans rats.
View Article and Find Full Text PDFNeurobiol Learn Mem
September 2011
When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia.
View Article and Find Full Text PDFThese experiments examined the effects of prior stress, corticosterone, or epinephrine on learning in mazes that can be solved efficiently using either place or response strategies. In a repeated stress condition, rats received restraint stress for 6h/day for 21 days, ending 24h before food-motivated maze training. In two single stress conditions, rats received a 1-h episode of restraint stress ending 30 min or 24h prior to training.
View Article and Find Full Text PDF