Huntington's disease (HD) is a late-onset neurodegenerative disease characterized by a progressive loss of medium spiny neurons in the basal ganglia. The development of stem cell-based therapies for HD aims to replace lost neurons and/or to prevent cell death. This review will discuss pre-clinical studies which have utilized stem or progenitor cells for transplantation therapy using HD animal models.
View Article and Find Full Text PDFThe presence of both neural and glial precursor cells in the adult central nervous system (CNS) and the capacity of these cells to migrate through this mature structure to areas of pathological damage and injury raises hope for the development of new therapeutic strategies to treat brain injury and disease. Although at present time, the compensatory neurogenesis described after various types of brain pathologies appears to be modest, the development of a strategy promoting the directed mobilization and phenotypic induction of endogenous precursor cells to areas of neural cell loss remains of high interest. The development of such a strategy however is currently thwarted by a limited understanding of the process and factors influencing precursor cell migration.
View Article and Find Full Text PDFIn this study we demonstrate the chemokines MCP-1, MIP-1alpha and GRO-alpha play a role in directing adult subventricular zone (SVZ)-derived progenitor cell migration following striatal cell death. MCP-1, MIP-1alpha and GRO-alpha were significantly upregulated in the striatum 2-3 days following QA-induced lesioning, correlating with maximum SVZ-derived progenitor cell recruitment into the lesioned striatum. We established that SVZ-derived progenitor cells express receptors for each chemokine, and demonstrated MCP-1, MIP-1alpha and GRO-alpha to be potent chemoattractants for SVZ-derived progenitor cells in vitro.
View Article and Find Full Text PDF