Publications by authors named "Renee H L Raaijmakers"

Background: Cell-based strategies are being explored as a therapeutic option for muscular dystrophies, using a variety of cell types from different origin and with different characteristics. Primary pericytes are multifunctional cells found in the capillary bed that exhibit stem cell-like and myogenic regenerative properties. This unique combination allows them to be applied systemically, presenting a promising opportunity for body-wide muscle regeneration.

View Article and Find Full Text PDF

Pericytes are multipotent, vessel-associated progenitors that exhibit high proliferative capacity, can cross the blood-muscle barrier, and have the ability to home to muscle tissue and contribute to myogenesis. Consequently, pericyte-based therapies hold great promise for muscular dystrophies. A complex multi-system disorder exhibiting muscular dystrophy for which pericytes might be a valuable cell source is myotonic dystrophy type 1 (DM1).

View Article and Find Full Text PDF

CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the / gene pair, the autosomal dominant mutation that causes DM1.

View Article and Find Full Text PDF

Purpose: Ethosuximide (ETX) is the drug of choice for the treatment of patients with absence seizures - taking into account both its efficacy, tolerability and antiepileptogenic properties. However, 47% of subjects failed in ETX-therapy, and most antiepileptic drugs have cognitive side effects. VU0360172, a positive allosteric modulator (PAM) of mGluR5, has been proposed as a new anti-absence drug.

View Article and Find Full Text PDF