Objective: Gut microbes and microbe-dependent metabolites (eg, tryptophan-kynurenine-serotonin pathway metabolites) have been linked to systemic inflammation, but the microbiota-metabolite-inflammation axis remains uncharacterised in children. Here we investigated whether gut microbiota features and circulating metabolites (both microbe-dependent and non-microbe-dependent metabolites) associated with circulating inflammation markers in children.
Methods: We studied children from the prospective Gen3G birth cohort who had data on untargeted plasma metabolome (n=321 children; Metabolon platform), gut microbiota (n=147; 16S rRNA sequencing), and inflammation markers (plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein-1, and tumour necrosis factor-α) measured at 5-7 years.
Int J Obes (Lond)
September 2023
Front Endocrinol (Lausanne)
November 2022
Aims: Our objective is to identify first-trimester plasmatic miRNAs associated with and predictive of GDM.
Methods: We quantified miRNA using next-generation sequencing in discovery (Gen3G: n = 443/GDM = 56) and replication (3D: n = 139/GDM = 76) cohorts. We have diagnosed GDM using a 75-g oral glucose tolerance test and the IADPSG criteria.
Plasminogen activator inhibitor (PAI-1) expression has been associated with a higher risk of development of obesity. DNA methylation (DNAm) is an epigenetic mechanism regulating gene transcription and likely involved in the fetal programming of childhood obesity. Our study aimed to assess the associations between PAI-1 gene (SERPINE1) DNAm, plasma PAI-1 levels, and adiposity at five years of age.
View Article and Find Full Text PDFMany women enter pregnancy with overweight and obesity, which are associated with complications for both the expectant mother and her child. MicroRNAs (miRNAs) are short non-coding RNAs that regulate many biological processes, including energy metabolism. Our study aimed to identify first trimester plasmatic miRNAs associated with maternal body mass index (BMI) in early pregnancy.
View Article and Find Full Text PDFIntroduction: Gestational diabetes mellitus (GDM) is a consequence of an imbalance between insulin sensitivity (IS) and secretion during pregnancy. MicroRNAs (miRNAs) are small and secreted RNA molecules stable in blood and known to regulate physiological processes including glucose homeostasis. The aim of this study was to identify plasmatic miRNAs detectable in early pregnancy predicting IS at 24th-29th week of pregnancy.
View Article and Find Full Text PDFTo investigate the associations between high-density lipoprotein (HDL)-enriched miRNAs and the cardiometabolic profile of healthy men and women. miRNAs were quantified using next-generation sequencing of miRNAs extracted from purified HDL and plasma from 17 healthy men and women couples. Among the HDL-enriched miRNAs, miR-30a-5p correlated positively with HDL-cholesterol levels, whereas miR-144-5p and miR-30a-5p were negatively associated with fasting insulin levels and Homeostasis model assessment of insulin resistance index.
View Article and Find Full Text PDFThe aim of this study was to identify placental DNA methylation (DNAm) variations associated with adiposity at 3 years of age. We quantified placental DNAm using the Infinium MethylationEPIC BeadChips. We assessed associations between DNAm at single-CpGs and skinfold thickness using robust linear regression models adjusted for gestational age, child's sex, age at follow-up and cellular heterogeneity.
View Article and Find Full Text PDFBackground: Introducing complementary foods other than breastmilk or formula acutely changes the infant gut microbiota composition. However, it is unknown whether the timing of introduction to complementary foods (early vs. late) in infancy is associated with early childhood gut microbiota and BMI, and if these associations depend on breastfeeding duration.
View Article and Find Full Text PDFChanges in fetal DNA methylation (DNAm) of the leptin () gene have been associated with exposure to maternal hyperglycemia, but their links with childhood obesity risk are still unclear. We investigated the association between maternal hyperglycemia, placental DNAm (25 5'-C-phosphate-G-3' (CpG) sites), neonatal leptinemia, and adiposity (i.e.
View Article and Find Full Text PDFGestational diabetes mellitus (GDM) is associated with obesity in childhood. This suggests that consequences of in utero exposure to maternal hyperglycemia extend beyond the fetal development, possibly through epigenetic programming. The aims of this study were to assess whether placental DNA methylation (DNAm) marks were associated with maternal GDM status and to offspring body composition at 5 years old in a prospective birth cohort.
View Article and Find Full Text PDFPurpose Of The Review: This review focuses on the recent emergence of microRNAs (miRNAs) as metabolic and developmental regulators in pregnancy and their role in the development of gestational diabetes mellitus (GDM). MiRNAs are short and stable RNA sequences that repress protein synthesis through interference with messenger RNA translation.
Recent Findings: The placenta produces numerous miRNAs with some of them being released in the maternal circulation.
microRNAs (miRNAs) are short (~22 nucleotides), non-coding, single-stranded RNA molecules that regulate the expression of target genes by partial sequence-specific base-pairing to the targeted mRNA 3'UTR, blocking its translation, and promoting its degradation or its sequestration into processing bodies. miRNAs are important regulators of several physiological processes including developmental and metabolic functions, but their concentration in circulation has also been reported to be altered in many pathological conditions such as familial hypercholesterolemia, cardiovascular diseases, obesity, type 2 diabetes, and cancers. In this review, we focus on the role of miRNAs in lipoprotein and lipid metabolism, with special attention to the well-characterized miR-33a/b, and on the huge potential of miRNAs for clinical application as biomarkers and therapeutics in the context of cardiometabolic diseases.
View Article and Find Full Text PDFBackground: Children exposed to gestational diabetes mellitus (GDM) are at a higher risk of developing obesity and type 2 diabetes. This susceptibility might involve brown adipose tissue (BAT), which is suspected to protect against obesity. The objective of this study is to assess whether fetal exposure to maternal hyperglycemia is associated with DNA methylation variations in genes involved in BAT genesis and activation.
View Article and Find Full Text PDFA high consumption of trans fatty acids (TFAs) is associated with an increased risk of cardiovascular diseases (CVDs). High-density lipoproteins (HDLs) have many cardioprotective properties and transport functional microRNAs (miRNAs) to recipient cells. We hypothesized that dietary TFAs modify the HDL-carried miRNA profile, therefore modulating its cardioprotective properties.
View Article and Find Full Text PDFUnlabelled: Since HbA1c became a diagnostic criterion for type 2 diabetes, assays measuring this analyte were required to be analytically stronger. Although precision of Sebia Capillarys 2 Flex Piercing® was previously evaluated with standard methods and material, we wanted to document the long-term performance of this analyzer in two different centers.
Design And Methods: In this study, we evaluated, with a non-conventional methodology, the analytical precision of the Sebia Capillarys 2 Flex Piercing® using HbA1c patient data and compared it with two different common commercial immunoassays.
Yeasts have evolved numerous responsive pathways to survive in fluctuating and stressful environments. The endoplasmic reticulum (ER) is sensitive to adverse conditions, which are detected by response pathways to ensure correct protein folding. Calnexin is an ER transmembrane chaperone acting in both quality control of folding and response to persistent stress.
View Article and Find Full Text PDFInositol is a precursor of numerous phospholipids and signalling molecules essential for the cell. Schizosaccharomyces pombe is naturally auxotroph for inositol as its genome does not have a homologue of the INO1 gene encoding inositol-1-phosphate synthase, the enzyme responsible for inositol biosynthesis. In this work, we demonstrate that inositol starvation in S.
View Article and Find Full Text PDFIn fission yeast, the ER-residing molecular chaperone calnexin is normally essential for viability. However, a specific mutant of calnexin that is devoid of chaperone function (Deltahcd_Cnx1p) induces an epigenetic state that allows growth of Schizosaccharomyces pombe without calnexin. This calnexin-independent (Cin) state was previously shown to be mediated via a non-chromosomal element exhibiting some prion-like features.
View Article and Find Full Text PDF