Publications by authors named "Renee C Fuller"

This paper describes a method to detect the presence of bacteria in aqueous samples, based on the capture of bacteria on a syringe filter, and the infection of targeted bacterial species with a bacteriophage (phage). The use of phage as a reagent provides two opportunities for signal amplification: (i) the replication of phage inside a live bacterial host and (ii) the delivery and expression of the complementing gene that turns on enzymatic activity and produces a colored or fluorescent product. Here we demonstrate a phage-based amplification scheme with an M13KE phage that delivers a small peptide motif to an F(+), α-complementing strain of Escherichia coli K12, which expresses the ω-domain of β-galactosidase (β-gal).

View Article and Find Full Text PDF

Although infection and inflammation commonly coexist, there is a paucity of appropriate methods for concurrent localized delivery of antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) at appropriate concentrations and timescales. The commonly used therapeutic approach of systemic delivery of antibiotics and NSAIDs is associated with many complications, including rises in antibiotic resistant bacteria and severe gastrointestinal problems. As a potential solution, in this work we have assembled polymer multilayers to concurrently release therapeutic concentrations of an antibiotic, vancomycin, and an NSAID, diclofenac.

View Article and Find Full Text PDF

Here we present a new bifunctional layer-by-layer (LbL) construct made by combining a permanent microbicidal polyelectrolyte multilayered (PEM) base film with a hydrolytically degradable PEM top film that offers controlled and localized delivery of therapeutics. Two degradable film architectures are presented: (1) bolus release of an antibiotic (gentamicin) to eradicate initial infection at the implant site, or (2) sustained delivery of an anti-inflammatory drug (diclofenac) to cope with inflammation at the site of implantation due to tissue injury. Each degradable film was built on top of a permanent base film that imparts the implantable device surface with microbicidal functionality that prevents the formation of biofilms.

View Article and Find Full Text PDF