Genetic modifier screens provide a useful tool, in diverse organisms from to and mice, for recovering new genes of interest that may reduce or enhance a phenotype of interest. This study reports a modifier screen, based on N-ethyl-N-nitrosourea (ENU) mutagenesis and outcrossing, designed to increase understanding of the normal function of murine α-synuclein (). Human was the first gene linked to familial Parkinson's disease.
View Article and Find Full Text PDFFront Aging Neurosci
December 2022
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra region of the midbrain. Diagnostic criteria for PD require that at least two of three motor signs are observed: tremor, rigidity, and/or bradykinesia. The most common and effective treatment for PD is Levodopa (L-DOPA) which is readily converted to DA and has been the primary treatment since the 1960's.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
June 2022
Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-renewal to maintain the stability of the stem cell pool and differentiation to produce mature spermatozoa. Dysfunction of SSCs leads to male infertility.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting nearly 7-10 million people worldwide. Over the last decade, there has been considerable progress in our understanding of the genetic basis of PD, in the development of stem cell-based and animal models of PD, and in management of some clinical features. However, there remains little ability to change the trajectory of PD and limited knowledge of the underlying etiology of PD.
View Article and Find Full Text PDFThe pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated.
View Article and Find Full Text PDFMammalian development begins in transcriptional silence followed by a period of widespread activation of thousands of genes. DNA methylation reprogramming is integral to embryogenesis and linked to Tet enzymes, but their function in early development is not well understood. Here, we generate combined deficiencies of all three Tet enzymes in mouse oocytes using a morpholino-guided knockdown approach and study the impact of acute Tet enzyme deficiencies on preimplantation development.
View Article and Find Full Text PDFHistochem Cell Biol
September 2021
Human preimplantation development is characterized by low developmental rates that are poorly understood. Early mammalian embryogenesis is characterized by a major phase of epigenetic reprogramming, which involves global DNA methylation changes and activity of TET enzymes; the importance of DNA methylation reprogramming for successful human preimplantation development has not been investigated. Here, we analyzed early human embryos for dynamic changes in 5-methylcytosine and its oxidized derivatives generated by TET enzymes.
View Article and Find Full Text PDFObjective: To examine the relationships between age at menarche, antral follicle count (AFC), and body mass index (BMI) in a multi-ethnic population of women.
Design: Community-based, cross-sectional study.
Setting: Academic setting.
Self-renewal and pluripotency in human embryonic stem cells (hESCs) depends upon the function of a remarkably small number of master transcription factors (TFs) that include OCT4, SOX2, and NANOG. Endogenous factors that regulate and maintain the expression of master TFs in hESCs remain largely unknown and/or uncharacterized. Here, we use a genome-wide, proteomics approach to identify proteins associated with the OCT4 enhancer.
View Article and Find Full Text PDFDysregulation of genetic pathways during human germ cell development leads to infertility. Here, we analysed bona fide human primordial germ cells (hPGCs) to probe the developmental genetics of human germ cell specification and differentiation. We examined the distribution of OCT4 occupancy in hPGCs relative to human embryonic stem cells (hESCs).
View Article and Find Full Text PDFHuman fibroblasts were isolated from foreskin of a clinically diagnosed 40-year old patient with idiopathic infertility. The fibroblasts were reprogrammed with the Yamanaka KOSM transcriptional factors using the retroviral vectors. The obtained induced pluripotent stem cell (iPSC) line showed pluripotency verified by the expression of pluripotency markers, NANOG, SOX2, OCT4, TRA-1-60, and SSEA-4.
View Article and Find Full Text PDFOur overall goal is to create a three-dimensional human cell-based testicular model for toxicological and spermatogenesis studies. Methods to purify the major somatic testicular cells, namely Leydig cells (LCs), peritubular myoid cells (PCs) and Sertoli cells (SCs), from rats, mice and guinea pigs have been reported. In humans, the isolation of populations enriched for primary LCs, PCs or SCs also have described.
View Article and Find Full Text PDFThe mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation.
View Article and Find Full Text PDFHuman pluripotent stem cells provide a powerful human-genome based system for modeling human diseases in vitro and for potentially identifying novel treatments. Directed differentiation of pluripotent stem cells produces many specific cell types including dopaminergic neurons. Here, we generated a genetic reporter assay in pluripotent stem cells using newly-developed genome editing technologies in order to monitor differentiation efficiency and compare dopaminergic neuron survival under different conditions.
View Article and Find Full Text PDFThe causes of embryonic arrest during pre-implantation development are poorly understood. Attempts to correlate patterns of oocyte gene expression with successful embryo development have been hampered by the lack of reliable and nondestructive predictors of viability at such an early stage. Here we report that zygote viscoelastic properties can predict blastocyst formation in humans and mice within hours after fertilization, with >90% precision, 95% specificity and 75% sensitivity.
View Article and Find Full Text PDFGeneration of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson's disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs).
View Article and Find Full Text PDFLong intergenic noncoding RNAs (lincRNAs) are derived from thousands of loci in mammalian genomes and are frequently enriched in transposable elements (TEs). Although families of TE-derived lincRNAs have recently been implicated in the regulation of pluripotency, little is known of the specific functions of individual family members. Here we characterize three new individual TE-derived human lincRNAs, human pluripotency-associated transcripts 2, 3 and 5 (HPAT2, HPAT3 and HPAT5).
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate.
View Article and Find Full Text PDFAneuploidies are prevalent in the human embryo and impair proper development, leading to cell cycle arrest. Recent advances in imaging and molecular and genetic analyses are postulated as promising strategies to unveil the mechanisms involved in aneuploidy generation. Here we combine time-lapse, complete chromosomal assessment and single-cell RT-qPCR to simultaneously obtain information from all cells that compose a human embryo until the approximately eight-cell stage (n=85).
View Article and Find Full Text PDFRecent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled "Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals" in Washington, D.C.
View Article and Find Full Text PDFEndogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins.
View Article and Find Full Text PDFThe process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs), as well as during the extensive programming that occurs in human preimplantation development, is not well-understood. Indeed, studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here, we examine expression of the long noncoding RNA, XIST, in single cells of human embryos through the oocyte-to-embryo transition and in new mRNA reprogrammed iPSCs.
View Article and Find Full Text PDFX chromosome inactivation, the transcriptional inactivation of one X chromosome in somatic cells of female mammals, has revealed important advances in our understanding of development, epigenetic control, and RNA biology. Most of this knowledge comes from extensive studies in the mouse; however, there are some significant differences when compared to human biology. This is especially true in pluripotent cell types and, over the past few years, a significant amount of work has been dedicated to understanding these differences.
View Article and Find Full Text PDF