is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing.
View Article and Find Full Text PDFis a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing.
View Article and Find Full Text PDFBackground: Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis.
View Article and Find Full Text PDFThe tumor microenvironment (TME) is the source of important cues that govern epithelial-to-mesenchymal transition (EMT) and facilitate the acquisition of aggressive traits by cancer cells. It is now recognized that EMT is not a binary program, and cancer cells rarely switch to a fully mesenchymal phenotype. Rather, cancer cells exist in multiple hybrid epithelial/mesenchymal (E/M) states responsible for cell population heterogeneity, which is advantageous for the ever-changing environment during tumor development and metastasis.
View Article and Find Full Text PDFFusarochromanone is an experimental drug with unique and potent anti-cancer activity. Current cancer therapies often incorporate a combination of drugs to increase efficacy and decrease the development of drug resistance. In this study, we used drug combinations and cellular phenotypic screens to address important questions about FC101's mode of action and its potential therapeutic synergies in triple negative breast cancer (TNBC).
View Article and Find Full Text PDFMultiply damaged sites (MDSs) are generated in DNA by ionizing radiation. In vitro studies predict that base excision repair in cells will convert MDSs to lethal double strand breaks (DSBs) when two opposing base damages are situated >/=2 bp apart. If the lesions are situated immediately 5' or 3' to each other, repair is predicted to occur sequentially due to inhibition of the DNA glycosylase by a single strand break repair intermediate.
View Article and Find Full Text PDFA multiply damaged site (MDS) is defined as > or =2 lesions within a distance of 10-15 base pairs (bp). MDS generated by ionizing radiation contain oxidative base damage, and in vitro studies have indicated that if the base damage is <3bp apart, repair of one lesion is inhibited until repair of the lesion in the opposite strand is completed. Inhibition of repair could result in an increase in the mutation frequency of the base damage.
View Article and Find Full Text PDF