Publications by authors named "Rene-Marc Willemot"

The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor.

View Article and Find Full Text PDF

Expanded bed adsorption (EBA) is an interesting primary technology allowing the adsorption of target proteins from unclarified feedstock in order to combine separation, concentration, and purification steps. However, interactions between cells and adsorbent beads during the EBA process can strongly reduce the performance of the separation. So, to minimize these interactions, the mechanisms of cell adsorption on the support were investigated.

View Article and Find Full Text PDF

For the first time, glucosylation of alpha-butyl- and alpha-octylglucopyranoside was achieved using dextransucrase (DS) of various specificities, and alternansucrase (AS) from Leuconostoc mesenteroides. All the glucansucrases (GS) tested used alpha-butylglucopyranoside as acceptor; in particular, DS produced alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside and alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside. In contrast, alpha-octylglucopyranoside was glucosylated only by AS which was shown to be the most efficient catalyst.

View Article and Find Full Text PDF

A novel Leuconostoc mesenteroides NRRL B-1299 dextransucrase gene, dsrE, was isolated, sequenced, and cloned in Escherichia coli, and the recombinant enzyme was shown to be an original glucansucrase which catalyses the synthesis of alpha-1,6 and alpha-1,2 linkages. The nucleotide sequence of the dsrE gene consists of an open reading frame of 8,508 bp coding for a 2,835-amino-acid protein with a molecular mass of 313,267 Da. This is twice the average mass of the glucosyltransferases (GTFs) known so far, which is consistent with the presence of an additional catalytic domain located at the carboxy terminus of the protein and of a central glucan-binding domain, which is also significantly longer than in other glucansucrases.

View Article and Find Full Text PDF