Potent estrogen receptor ligands typically contain a phenolic hydrogen-bond donor. The indazole of the selective estrogen receptor degrader (SERD) ARN-810 is believed to mimic this. Disclosed herein is the discovery of ARN-810 analogs which lack this hydrogen-bond donor.
View Article and Find Full Text PDFSelective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.
View Article and Find Full Text PDFPurpose: Paclitaxel is an important anticancer agent for the treatment of non-small cell lung cancer (NSCLC). However, its use in cancer therapy is limited by development of acquired drug resistance. The goal of this study was to determine the effect of bexarotene on development of acquired paclitaxel resistance in NSCLC.
View Article and Find Full Text PDFWe have previously shown that the retinoid X receptor (RXR) ligand bexarotene (LGD1069, Targretin) is efficacious as a chemopreventive and chemotherapeutic agent in rat N-nitroso-N-methylurea (NMU)-induced mammary carcinomas (Cancer Res 58: 479-484, 1998). To determine additional role for bexarotene in breast cancer treatment, we evaluated the effect of bexarotene on the efficacy of paclitaxel (Taxol) treatment in a rat NMU-derived mammary tumor cell line, NMU-417, in vitro and in rat NMU-induced mammary tumors in vivo. Our growth inhibition results showed that the bexarotene/paclitaxel combination produced a concentration-dependent synergy in NMU-417 tumor cell line.
View Article and Find Full Text PDF