Publications by authors named "Rene Wijffels"

Deep eutectic solvents (DES) are green alternatives for conventional solvents. They have gained attention for their potential to extract valuable compounds from biomass, such as seaweed. In this framework, a case study was developed to assess the feasibility of pressure-driven membrane processes as an efficient tool for the recovery of deep eutectic solvents and targeted biomolecules.

View Article and Find Full Text PDF

Microalgae are a promising renewable feedstock that can be produced on non-arable land using seawater. Their biomass contains proteins, lipids, carbohydrates, and pigments, and can be used for various biobased products, such as food, feed, biochemicals, and biofuels. For such applications, the production costs need to be reduced, for example, by improving biomass productivity in photobioreactors.

View Article and Find Full Text PDF

Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical engineering tools. However, due to the complex nature of solid-state fermentation, mathematical models alone cannot explain the many dynamic changes that occur during these processes.

View Article and Find Full Text PDF

Snow algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High-quality snow algae genomes are needed for studies on their unique physiology, adaptive mechanisms, and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight.

View Article and Find Full Text PDF

Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P.

View Article and Find Full Text PDF

Extraction of seaweed compounds using Deep Eutectic Solvents (DES) has shown high interest. Quantification, however, is challenging due to interactions with DES components. In this research work, three chemical separation techniques were investigated to isolate and quantify alginate from a set of choline chloride-based DES.

View Article and Find Full Text PDF

Monoclonal antibodies are the workhorse of the pharmaceutical industry due to their potential to treat a variety of different diseases while providing high specificity and efficiency. As a consequence, a variety of production processes have been established within the biomanufacturing industry. However, the rapidly increasing demand for therapeutic molecules amid the recent COVID-19 pandemic demonstrated that there still is a clear need to establish novel, highly productive, and flexible production processes.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) are commonly manufactured by either discontinuous operations like fed-batch (FB) or continuous processes such as steady-state perfusion. Both process types comprise opposing advantages and disadvantages in areas such as plant utilization, feasible cell densities, media consumption and process monitoring effort. In this study, we show feasibility of a promising novel hybrid process strategy that combines beneficial attributes of both process formats.

View Article and Find Full Text PDF

As a global regulatory mechanism, carbon catabolite repression allows bacteria and eukaryal microbes to preferentially utilize certain substrates from a mixture of carbon sources. The mechanism varies among different species. In Pseudomonas spp.

View Article and Find Full Text PDF

Snow algae blooms often form green or red coloured patches in melting alpine and polar snowfields worldwide, yet little is known about their biology, biogeography, and species diversity. We investigated eight isolates collected from red snow in northern Norway, using a combination of morphology, 18S rRNA gene and internal transcribed spacer 2 (ITS2) genetic markers. Phylogenetic and ITS2 rRNA secondary structure analyses assigned six isolates to the species Raphidonema nivale, Deuterostichococcus epilithicus, Chloromonas reticulata, and Xanthonema bristolianum.

View Article and Find Full Text PDF

The potential of sponge-derived chemicals for pharmaceutical applications remains largely unexploited due to limited available biomass. Although many have attempted to culture marine sponge cells in vitro to create a scalable production platform for such biopharmaceuticals, these efforts have been mostly unsuccessful. We recently showed that Geodia barretti sponge cells could divide rapidly in M1 medium.

View Article and Find Full Text PDF

Photogranules are spherical aggregates formed of complex phototrophic ecosystems with potential for "aeration-free" wastewater treatment. Photogranules from a sequencing batch reactor were investigated by fluorescence microscopy, 16S/18S rRNA gene amplicon sequencing, microsensors, and stable- and radioisotope incubations to determine the granules' composition, nutrient distribution, and light, carbon, and nitrogen budgets. The photogranules were biologically and chemically stratified, with filamentous cyanobacteria arranged in discrete layers and forming a scaffold to which other organisms were attached.

View Article and Find Full Text PDF

Photogranules are a novel wastewater treatment technology that can utilize the sun's energy to treat water with lower energy input and have great potential for nutrient recovery applications. They have been proven to efficiently remove nitrogen and carbon but show lower conversion rates for phosphorus compared to established treatment systems, such as aerobic granular sludge. In this study, we successfully introduced polyphosphate accumulating organisms (PAOs) to an established photogranular culture.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) have gained enormous therapeutic application during the last decade as highly efficient and flexible tools for the treatment of various diseases. Despite this success, there remain opportunities to drive down the manufacturing costs of antibody-based therapies through cost efficiency measures. To reduce production costs, novel process intensification methods based on state-of-the-art fed-batch and perfusion have been implemented during the last few years.

View Article and Find Full Text PDF

After light, temperature is the most relevant environmental parameter in outdoors cultivation of microalgae. Suboptimal and supraoptimal temperatures negatively impact growth and photosynthetic performance with a subsequent effect on lipid accumulation. It is generally recognised that lower temperatures trigger an increase in fatty acid desaturation while higher temperatures trigger the opposite reaction.

View Article and Find Full Text PDF

Wastewater characteristics can vary significantly, and in some municipal wastewaters the N:P ratio is as low as 5 resulting in nitrogen-limiting conditions. In this study, the microbial community, function, and morphology of photogranules under nitrogen-replete (N+) and limiting (N-) conditions was assessed in sequencing batch reactors. Photogranules under N- condition were nitrogen deprived 2/3 of a batch cycle duration.

View Article and Find Full Text PDF

Macroalgae are a promising feedstock for several industries due to their large content of proteins and carbohydrates and the high biomass productivities. A novel extraction and fractionation concept based on ionic liquids (ILs) using as model organism is presented. Biomolecules are first extracted by means of IL-assisted mechanical shear, followed by two-phase partitioning or ultrafiltration in order to fractionate proteins and carbohydrates and to recover the IL.

View Article and Find Full Text PDF

The urge for food security and sustainability has advanced the field of microalgal biotechnology. Microalgae are microorganisms able to grow using (sun)light, fertilizers, sugars, CO, and seawater. They have high potential as a feedstock for food, feed, energy, and chemicals.

View Article and Find Full Text PDF

Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N.

View Article and Find Full Text PDF

Algae are a promising feedstock for the sustainable production of feed, fuels, and chemicals. Especially in arid regions such as the Arabian Peninsula, algae could play a significant role in enhancing food security, economic diversification, and decarbonization. Within this context, the regional potential of algae commercialization is discussed, exploring opportunities and challenges across technical, societal, and political aspects.

View Article and Find Full Text PDF

Real-time, detailed online information on cell cultures is essential for understanding modern biopharmaceutical production processes. The determination of key parameters, such as cell density and viability, is usually based on the offline sampling of bioreactors. Gathering offline samples is invasive, has a low time resolution, and risks altering or contaminating the production process.

View Article and Find Full Text PDF
Article Synopsis
  • Medium-chain-length fatty alcohols are valuable in various industries, including surfactants, lubricants, and cosmetics, with their acetate esters commonly used in flavors and fragrances.
  • Researchers engineered strains of Pseudomonas putida to enhance its ability to produce 1-hexanol and hexyl acetate by removing genes responsible for degrading fatty alcohols.
  • The optimal engineered strain produced significant amounts of 1-hexanol and hexyl acetate, suggesting P. putida can be developed as a microbial factory for sustainable production of medium-chain-length fatty alcohols and their products.
View Article and Find Full Text PDF

Nannochloropsis gaditana is a promising microalga for biotechnology. One of the strategies to stimulate its full potential in metabolite production is exposure to flashing lights. Here, we report how N.

View Article and Find Full Text PDF

Microalgae are considered an efficient accumulator and promising source of Se for feed additive purposes. This study aimed at investigating, for the first time, the effect of phosphorus limitation on Se accumulation and uptake efficiency in N.oceanica.

View Article and Find Full Text PDF

Background: Adaptive laboratory evolution (ALE) is a powerful method for strain optimization towards abiotic stress factors and for identifying adaptation mechanisms. In this study, the green microalga Picochlorum sp. BPE23 was cultured under supra-optimal temperature to force genetic adaptation.

View Article and Find Full Text PDF