A series of crystalline sp -sp diboron(4) compounds were synthesized and shown to promote the facile reduction of water with dihydrogen formation. The application of these diborons as simple and effective dihydrogen and dideuterium sources was demonstrated by conducting a series of selective reductions of alkynes and alkenes, and hydrogen-deuterium exchange reactions using two-chamber reactors. Finally, as the water reduction reaction generates an intermediate borohydride species, a range of aldehydes and ketones were reduced by using water as the hydride source.
View Article and Find Full Text PDFSignificant efforts have been devoted over the last few years to develop efficient molecular electrocatalysts for the electrochemical reduction of carbon dioxide to carbon monoxide, the latter being an industrially important feedstock for the synthesis of bulk and fine chemicals. Whereas these efforts primarily focus on this formal oxygen abstraction step, there are no reports on the exploitation of the chemistry for scalable applications in carbonylation reactions. Here we describe the design and application of an inexpensive and user-friendly electrochemical set-up combined with the two-chamber technology for performing Pd-catalysed carbonylation reactions including amino- and alkoxycarbonylations, as well as carbonylative Sonogashira and Suzuki couplings with near stoichiometric carbon monoxide.
View Article and Find Full Text PDF