Chemoreceptors help insects to interact with their environment, to detect and assess food sources and oviposition sites, and to aid in intra- and interspecific communication. In Hymenoptera, species of eusocial lineages possess large chemoreceptor gene repertoires compared with solitary species, possibly because of their additional need to recognize nest-mates and caste. However, a critical piece of information missing so far has been the size of chemoreceptor gene repertoires of solitary apoid wasps.
View Article and Find Full Text PDFDiapause in arthropods is a physiological state of dormancy that is generally thought to promote survival during harsh seasons and dispersal, but it may also serve to avoid predation in space and time. Here, we show that predation-related odours induce diapause in female adult spider mites. We argue that this response allows them to move into an area where they are free of enemies, yet forced to survive without food.
View Article and Find Full Text PDFWe recently reported evidence for increased diapause incidence in the spider mite Tetranychus urticae in presence of the predatory mite Typhlodromus pyri. This effect may arise from (1) selective predation on non-diapause spider mites, (2) predator-induced diapause in spider mites, or (3) both. Using a different strain of T.
View Article and Find Full Text PDFWhenever diapause induction triggers movement into another microhabitat or the development of protective morphological structures, this may also alter predation risk. If the risk of being eaten is lower in the diapause phase, then there may be selection favouring diapause induction in response to predators or their cues. In this article, we studied the effect of the predatory mite Typhlodromus pyri on diapause induction in the spider mite Tetranychus urticae.
View Article and Find Full Text PDFIn the spider mite Tetranychus urticae photoperiodic time measurement proceeds accurately in orange-red light of 580 nm and above in light/dark cycles with a period length of 20 h but not in 'natural' cycles with a period length of 24 h. To explain these results it is hypothesized that the photoperiodic clock in the spider mite is sensitive to orange-red light, but the Nanda-Hamner rhythm (a circadian rhythm with a free-running period tau of 20 h involved in the photoperiodic response) is not and consequently free runs in orange-red light. To test this hypothesis a zeitgeber was sought that could entrain the Nanda-Hamner rhythm to a 24-h cycle without inducing diapause itself, in order to manipulate the rhythm independently from the orange-red sensitive photoperiodic clock.
View Article and Find Full Text PDF