Publications by authors named "Rene Van Zeijl"

Article Synopsis
  • * Understanding how adenomas progress to T1 CRC is critical, with glycomic studies suggesting that examining changes in glycan patterns could provide valuable insights.
  • * Using MALDI mass spectrometry imaging, researchers identified notable differences in glycan profiles among normal, dysplastic, and cancerous tissue, highlighting specific glycan alterations linked to cell proliferation and cancer invasion.
View Article and Find Full Text PDF

New insights into the underlying biological processes of breast cancer are needed for the development of improved markers and treatments. The complex nature of mammary cancer in dogs makes it a great model to study cancer biology since they present a high degree of tumor heterogeneity. In search of disease-state biomarkers candidates, we applied proteomic mass spectrometry imaging in order to simultaneously detect histopathological and molecular alterations whilst preserving morphological integrity, comparing peptide expression between intratumor populations in distinct levels of differentiation.

View Article and Find Full Text PDF

Background: Degeneration of shoulder muscle tissues often result in tearing, causing pain, disability and loss of independence. Differential muscle involvement patterns have been reported in tears of shoulder muscles, yet the molecules involved in this pathology are poorly understood. The spatial distribution of biomolecules across the affected tissue can be accurately obtained with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI).

View Article and Find Full Text PDF

The choice for adjuvant chemotherapy in stage II colorectal cancer is controversial as many patients are cured by surgery alone and it is difficult to identify patients with high risk of recurrence of the disease. There is a need for better stratification of this group of patients. Mass spectrometry imaging could identify patients at risk.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a rapidly evolving field in which mass spectrometry techniques are applied directly on tissues to characterize the spatial distribution of various molecules such as lipids, protein/peptides, and recently also N-glycans. Glycans are involved in many biological processes and several glycan changes have been associated with different kinds of cancer, making them an interesting target group to study. An important analytical challenge for the study of glycans by MALDI mass spectrometry is the labile character of sialic acid groups which are prone to in-source/postsource decay, thereby biasing the recorded glycan profile.

View Article and Find Full Text PDF

Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. The molecular anatomy of healthy and atherosclerotic tissue is pursued to identify ongoing molecular changes in atherosclerosis development. Mass Spectrometry Imaging (MSI) accounts with the unique advantage of analyzing proteins and metabolites (lipids) while preserving their original localization; thus two dimensional maps can be obtained.

View Article and Find Full Text PDF

The molecular anatomy of healthy and atherosclerotic tissue is pursued here to identify ongoing molecular changes in atherosclerosis development. Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. Mass spectrometry imaging (MSI) is a novel unexplored ex vivo imaging approach in CVD able to provide in-tissue molecular maps.

View Article and Find Full Text PDF
Article Synopsis
  • Cortical spreading depression (CSD) is a brain event linked to migraine auras, and it happens more in mice that have a specific gene mutation related to a type of migraine.
  • Researchers used a special imaging technique (mass spectrometry imaging) to study changes in the brains of both normal and mutant mice after CSD occurred.
  • They found that specific substances in the brain changed in interesting ways after CSD, which might help us understand more about how migraines happen and the importance of CSD.
View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging using 9-aminoacridine as the matrix leads to the detection of low mass metabolites and lipids directly from cancer tissues. These included lactate and pyruvate for studying the Warburg effect, as well as succinate and fumarate, metabolites whose accumulation is associated with specific syndromes. By using the pathway information present in the human metabolome database, it was possible to identify regions within tumor tissue samples with distinct metabolic signatures that were consistent with known tumor biology.

View Article and Find Full Text PDF

Tissue preparation is the key to a successful MALDI mass spectrometry imaging experiment. A number of different tissue preparations methods have recently been reported for increased sensitivity and/or high spatial resolution analysis. In order to better benchmark these methods in terms of the information content and their suitability for analyzing small tissues containing small but distinct regions, we have performed an extensive comparison using technical and biological repeats as well as a fully randomized measuring sequence.

View Article and Find Full Text PDF

Mass spectrometry imaging holds great potential for understanding the molecular basis of neurological disease. Several key studies have demonstrated its ability to uncover disease-related biomolecular changes in rodent models of disease, even if highly localized or invisible to established histological methods. The high analytical reproducibility necessary for the biomedical application of mass spectrometry imaging means it is widely developed in mass spectrometry laboratories.

View Article and Find Full Text PDF

Many tumors display significant cellular heterogeneity as well as molecular heterogeneity. Sensitive biomarkers that differentiate between diagnostically challenging tumors must contend with this heterogeneity. Mass spectrometry-based molecular histology of a patient series of heterogeneous, microscopically identical bone tumors highlighted the tumor cell types that could be characterized by a single profile and led to the identification of specific peptides that differentiate between the tumors.

View Article and Find Full Text PDF

MALDI mass spectrometry can simultaneously measure hundreds of biomolecules directly from tissue. Using essentially the same technique but different sample preparation strategies, metabolites, lipids, peptides and proteins can be analyzed. Spatially correlated analysis, imaging MS, enables the distributions of these biomolecular ions to be simultaneously measured in tissues.

View Article and Find Full Text PDF

Imaging MS enables the distributions of hundreds of biomolecular ions to be determined directly from tissue samples. The application of multivariate methods, to identify pixels possessing correlated MS profiles, is referred to as molecular histology as tissues can be annotated on the basis of the MS profiles. The application of imaging MS-based molecular histology to larger tissue series, for clinical applications, requires significantly increased computational capacity in order to efficiently analyze the very large, highly dimensional datasets.

View Article and Find Full Text PDF

MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data.

View Article and Find Full Text PDF

Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools.

View Article and Find Full Text PDF
Article Synopsis
  • Myxofibrosarcoma and myxoid liposarcomas are types of tumors in soft tissue that have a special gooey part called myxoid extracellular matrix, and they can sometimes look similar under a microscope.
  • Scientists studied 40 cases of these tumors using a high-tech method called imaging mass spectrometry, which helps them see different molecules in the tissue without knowing what to expect.
  • They found specific proteins and lipids that can tell the type and grade of tumors apart and noticed that some areas in the same tumor could look different and show changes that help understand how the tumor might grow.
View Article and Find Full Text PDF

MALDI imaging and profiling mass spectrometry of proteins typically leads to the detection of a large number of peptides and small proteins but is much less successful for larger proteins: most ion signals correspond to proteins of m/z < 25,000. This is a severe limitation as many proteins, including cytokines, growth factors, enzymes, and receptors have molecular weights exceeding 25 kDa. The detector technology typically used for protein imaging, a microchannel plate, is not well suited to the detection of high m/z ions and is prone to detector saturation when analyzing complex mixtures.

View Article and Find Full Text PDF

Background: Since its introduction 10 years ago by Caprioli and associates, MALDI mass spectrometry imaging has enabled spatial analysis of drugs, lipids, peptides, and polypeptides. In polypeptides, the detectable mass range is limited to small proteins with a mass less than 25 kDa. This is a limitation, as many proteins, including cytokines, growth factors, enzymes, and receptors have molecular weights, exceeding 25 kDa.

View Article and Find Full Text PDF

MALDI mass spectrometry is able to acquire protein profiles directly from tissue that can describe the levels of hundreds of distinct proteins. MALDI imaging MS can simultaneously reveal how each of these proteins varies in heterogeneous tissues. Numerous studies have now demonstrated how MALDI imaging MS can generate different protein profiles from the different cell types in a tumor, which can act as biomarker profiles or enable specific candidate protein biomarkers to be identified.

View Article and Find Full Text PDF

The term molecular histology has been used to convey the potential of imaging mass spectrometry to describe tissue by its constituent peptides and proteins, and to link this with established histological features. The low throughput of imaging mass spectrometry has been one of the factors inhibiting a full investigation of the clinical potential of molecular histology. Here we report the development of an automated set-up, consisting of a controlled environment sample storage chamber, a sample loading robot, and a MALDI-TOF/TOF mass spectrometer, all controlled by a single user interface.

View Article and Find Full Text PDF

A typical imaging mass spectrometry data set can contain 100+ images, each describing the distribution of a specific biomolecule. Multivariate and hierarchical clustering techniques have been developed to investigate the correlations within a data set, and have revealed the differential patterns associated with different organs/anatomical features. These methods do not quantify the correlations between the hundreds of molecular distributions produced in an imaging mass spectrometry experiment, and are extremely difficult to apply to multiple tissue section investigations.

View Article and Find Full Text PDF