When vitreous silica is submitted to high pressures under a helium atmosphere, the change in volume observed is much smaller than expected from its elastic properties. It results from helium penetration into the interstitial free volume of the glass network. We present here the results of concurrent spectroscopic experiments using either helium or neon and molecular simulations relating the amount of gas adsorbed to the strain of the network.
View Article and Find Full Text PDFSound velocities of vitreous silica are measured under He compression in the pressure range of 0-6 GPa by Brillouin light scattering. It is found that the well-known anomalous maximum in the pressure dependence of the compressibility is suppressed by He incorporation into the silica network. This shows that the elastic anomaly relates to the collapse of the largest interstitial voids in the structure.
View Article and Find Full Text PDF