Publications by authors named "Rene Uebe"

Organelle-specific protein translocation systems are essential for organelle biogenesis and maintenance in eukaryotes but thought to be absent from prokaryotic organelles. Here, we demonstrate that MamF-like proteins are crucial for the formation and functionality of bacterial magnetosome organelles. Deletion of mamF-like genes in the Alphaproteobacterium Magnetospirillum gryphiswaldense results in severe defects in organelle positioning, biomineralization, and magnetic navigation.

View Article and Find Full Text PDF

Magnetosomes are complex membrane organelles synthesized by magnetotactic bacteria (MTB) for navigation in the Earth's magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense, all steps of magnetosome formation are tightly controlled by >30 specific genes arranged in several gene clusters. However, the transcriptional organization of the magnetosome gene clusters has remained poorly understood.

View Article and Find Full Text PDF

Background: Magnetosome formation in the alphaproteobacterium Magnetospirillum gryphiswaldense is controlled by more than 30 known mam and mms genes clustered within a large genomic region, the 'magnetosome island' (MAI), which also harbors numerous mobile genetic elements, repeats, and genetic junk. Because of the inherent genetic instability of the MAI caused by neighboring gene content, the elimination of these regions and their substitution by a compact, minimal magnetosome expression cassette would be important for future analysis and engineering. In addition, the role of the MAI boundaries and adjacent regions are still unclear, and recent studies indicated that further auxiliary determinants for magnetosome biosynthesis are encoded outside the MAI.

View Article and Find Full Text PDF

Background: Because of its tractability and straightforward cultivation, the magnetic bacterium Magnetospirillum gryphiswaldense has emerged as a model for the analysis of magnetosome biosynthesis and bioproduction. However, its future use as platform for synthetic biology and biotechnology will require methods for large-scale genome editing and streamlining.

Results: We established an approach for combinatory genome reduction and generated a library of strains in which up to 16 regions including large gene clusters, mobile genetic elements and phage-related genes were sequentially removed, equivalent to ~ 227.

View Article and Find Full Text PDF

Magnetotactic bacteria (MTB) stand out by their ability to manufacture membrane-enclosed magnetic organelles, so-called magnetosomes. Previously, it has been assumed that a genomic region of approximately 100 kbp, the magnetosome island (MAI), harbors all genetic determinants required for this intricate biosynthesis process. Recent evidence, however, argues for the involvement of additional auxiliary genes that have not been identified yet.

View Article and Find Full Text PDF

Background: Magnetosomes produced by magnetotactic bacteria represent magnetic nanoparticles with unprecedented characteristics. However, their use in many biotechnological applications has so far been hampered by their challenging bioproduction at larger scales.

Results: Here, we developed an oxystat batch fermentation regime for microoxic cultivation of Magnetospirillum gryphiswaldense in a 3 L bioreactor.

View Article and Find Full Text PDF
Article Synopsis
  • - Bacterial magnetosomes (MS) are specialized nanoparticles made of iron oxide, which can be genetically and chemically engineered, making them useful for biomedical applications like imaging and drug delivery.
  • - Current methods for purifying these particles are not standardized, limiting their production and testing for practical use, necessitating reliable isolation and quality assessment protocols.
  • - This study focuses on developing a multi-step purification process for MS, evaluating their purity, size, and potential cytotoxic effects, thereby providing essential insights for high-yield production and future biomedical applications.
View Article and Find Full Text PDF

The magnetotactic lifestyle represents one of the most complex traits found in many bacteria from aquatic environments and depends on magnetic organelles, the magnetosomes. Genetic transfer of magnetosome biosynthesis operons to a non-magnetotactic bacterium has only been reported once so far, but it is unclear whether this may also occur in other recipients. Besides magnetotactic species from freshwater, the genus Magnetospirillum of the Alphaproteobacteria also comprises a number of strains lacking magnetosomes, which are abundant in diverse microbial communities.

View Article and Find Full Text PDF

The biomineralization pathway of magnetite in magnetotactic bacteria is still poorly understood and a matter of intense debates. In particular, the existence, nature, and location of possible mineral precursors of magnetite are not clear. One possible precursor has been suggested to be ferritin-bound ferrihydrite.

View Article and Find Full Text PDF

Magnetotactic bacteria form unique prokaryotic organelles, termed magnetosomes, which consist of membrane-enclosed magnetite nanoparticles. Analysis of magnetosome biogenesis has been greatly facilitated by proteomic methods. These, however, require pure, highly enriched magnetosomes.

View Article and Find Full Text PDF

is a key organism for understanding magnetosome formation and magnetotaxis. As earlier studies suggested a high genomic plasticity, we (re)sequenced the type strain MSR-1 and the laboratory strain R3/S1. Both sequences differ by only 11 point mutations, but organization of the magnetosome island deviates from that of previous genome sequences.

View Article and Find Full Text PDF

Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe O ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport.

View Article and Find Full Text PDF

Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp.

View Article and Find Full Text PDF

Cation diffusion facilitators (CDF) are highly conserved, metal ion efflux transporters that maintain divalent transition metal cation homeostasis. Most CDF proteins contain two domains, the cation transporting transmembrane domain and the regulatory cytoplasmic C-terminal domain (CTD). MamM is a magnetosome-associated CDF protein essential for the biomineralization of magnetic iron-oxide particles in magnetotactic bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Magnetosomes in magnetotactic bacteria are complex nanocrystals that aid in magnetic navigation and are important for studying organelle formation in prokaryotes.
  • The process of magnetosome biosynthesis starts with the development of the magnetosome membrane (MM), which is vital for controlling mineral formation, but its early formation stages are not well understood.
  • In the study of Magnetospirillum gryphiswaldense, around 30 genes related to magnetosome biosynthesis were identified, with key genes MamB, MamM, MamQ, and MamL playing crucial roles in MM development, indicating that multiple proteins work together rather than any single factor being solely responsible.
View Article and Find Full Text PDF

Unlabelled: Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties.

View Article and Find Full Text PDF

Cation diffusion facilitators (CDF) are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all organisms. CDFs were found to be involved in numerous human health conditions, such as Type-II diabetes and neurodegenerative diseases. In this work, we established the magnetite biomineralizing alphaproteobacterium Magnetospirillum gryphiswaldense as an effective model system to study CDF-related Type-II diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focused on MamM, a key ion transporter from magnetotactic bacteria, using various scientific methods to investigate how this protein is activated.
  • * Findings indicate that MamM's cytosolic domain can form a stable dimer and changes shape when divalent cations bind to it, revealing a new way in which this protein self-regulates its function to transport ions.
View Article and Find Full Text PDF

Magnetotactic bacteria have the ability to orient along geomagnetic field lines based on the formation of magnetosomes, which are intracellular nanometer-sized, membrane-enclosed magnetic iron minerals. The formation of these unique bacterial organelles involves several processes, such as cytoplasmic membrane invagination and magnetosome vesicle formation, the accumulation of iron in the vesicles, and the crystallization of magnetite. Previous studies suggested that the magA gene encodes a magnetosome-directed ferrous iron transporter with a supposedly essential function for magnetosome formation in Magnetospirillum magneticum AMB-1 that may cause magnetite biomineralization if expressed in mammalian cells.

View Article and Find Full Text PDF

Magnetotactic bacteria form chains of intracellular membrane-enclosed, nanometre-sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated with the magnetosome membrane of Magnetospirillum gryphiswaldense are MamB and MamM, which were implicated in magnetosomal iron transport because of their similarity to the cation diffusion facilitator family.

View Article and Find Full Text PDF

Magnetotactic bacteria synthesize specific organelles, the magnetosomes, which are membrane-enveloped crystals of the magnetic mineral magnetite (Fe(3)O(4)). The biomineralization of magnetite involves the uptake and intracellular accumulation of large amounts of iron. However, it is not clear how iron uptake and biomineralization are regulated and balanced with the biochemical iron requirement and intracellular homeostasis.

View Article and Find Full Text PDF