The nucleosome complex of DNA wrapped around a histone protein octamer organizes the genome of eukaryotes and regulates the access of protein factors to the DNA. We performed molecular dynamics simulations of the nucleosome in explicit water to study the dynamics of its histone-DNA interactions. A high-resolution histone-DNA interaction map was derived that revealed a five-nucleotide periodicity, in which the two DNA strands of the double helix made alternating contacts.
View Article and Find Full Text PDFThe folding of the nucleosome chain into a chromatin fiber is a central factor for controlling the DNA access of protein factors involved in transcription, DNA replication and repair. Force spectroscopy experiments with chromatin fibers are ideally suited to dissect the interactions that drive this process, and to probe the underlying fiber conformation. However, the interpretation of the experimental data is fraught with difficulties due to the complex interplay of the nucleosome geometry and the different energy terms involved.
View Article and Find Full Text PDFDNA-DNA interactions are important for genome compaction and transcription regulation. In studies of such complex processes, DNA is often modeled as a homogeneously charged cylinder and its electrostatic interactions are calculated within the framework of the Poisson-Boltzmann equation. Commonly, a charge adaptation factor is used to address limitations of this theoretical approach.
View Article and Find Full Text PDFEspecially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required.
View Article and Find Full Text PDFThe three-dimensional structure of chromatin affects DNA accessibility and is therefore a key regulator of gene expression. However, the path of the DNA between consecutive nucleosomes, and the resulting chromatin fiber organization remain controversial. The conformational space available for the folding of the nucleosome chain has been analytically described by phase diagrams with a two-angle model, which describes the chain trajectory by a DNA entry-exit angle at the nucleosome and a torsion angle between consecutive nucleosomes.
View Article and Find Full Text PDFThe folding of the nucleosome chain into a chromatin fiber modulates DNA accessibility and is therefore an important factor for the control of gene expression. The fiber conformation depends crucially on the interaction between individual nucleosomes. However, this parameter has not been accurately determined experimentally, and it is affected by posttranslational histone modifications and binding of chromosomal proteins.
View Article and Find Full Text PDFBased on model structures with atomic resolution, a coarse-grained model for the nucleosome geometry was implemented. The dependence of the chromatin fiber conformation on the spatial orientation of nucleosomes and the path and length of the linker DNA was systematically explored by Monte Carlo simulations. Two fiber types were analyzed in detail that represent nucleosome chains without and with linker histones, respectively: two-start helices with crossed-linker DNA (CL conformation) and interdigitated one-start helices (ID conformation) with different nucleosome tilt angles.
View Article and Find Full Text PDF