Publications by authors named "Rene Solano Fonseca"

Article Synopsis
  • Dopaminergic neurons are particularly vulnerable to trauma-induced neurodegeneration, a trait observed in various species from nematodes to humans.
  • The research highlights that dopamine, which plays a crucial role in Parkinson's disease, becomes toxic during injuries, especially when produced outside its usual neurons.
  • An imbalance in dopamine levels due to trauma leads to cell damage, and this vulnerability is intensified by an increase in a key enzyme for dopamine production triggered by the FOS-1 transcription factor.
View Article and Find Full Text PDF

Imbalances in lipid homeostasis can have deleterious effects on health. Yet how cells sense metabolic demand due to lipid depletion and respond by increasing nutrient absorption remains unclear. Here we describe a mechanism for intracellular lipid surveillance in Caenorhabditis elegans that involves transcriptional inactivation of the nuclear hormone receptor NHR-49 through its cytosolic sequestration to endocytic vesicles via geranylgeranyl conjugation to the small G protein RAB-11.

View Article and Find Full Text PDF

Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons.

View Article and Find Full Text PDF

Mechanical stimuli initiate adaptive signal transduction pathways, yet exceeding the cellular capacity to withstand physical stress results in death. The molecular mechanisms underlying trauma-induced degeneration remain unclear. In the nematode C.

View Article and Find Full Text PDF

Age-associated decay of intercellular interactions impairs the cells' capacity to tightly associate within tissues and form a functional barrier. This barrier dysfunction compromises organ physiology and contributes to systemic failure. The actin cytoskeleton represents a key determinant in maintaining tissue architecture.

View Article and Find Full Text PDF

The brain can generate new neurons from neural stem cells throughout life. However, the capacity for neurogenesis declines with age, reducing the potential for learning and repair. We explored the effects of calorie restriction, an established anti-aging intervention, on neural stem cells in the subventricular zone of young and aged mice.

View Article and Find Full Text PDF

Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair.

View Article and Find Full Text PDF

Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD); however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus) that are severely afflicted in AD patients might be vulnerable to ferroptosis.

View Article and Find Full Text PDF

Neural stem cells (NSCs) exist throughout life in the ventricular-subventricular zone (V-SVZ) of the mammalian forebrain. During aging NSC function is diminished through an unclear mechanism. In this study, we establish microglia, the immune cells of the brain, as integral niche cells within the V-SVZ that undergo age-associated repositioning in the V-SVZ.

View Article and Find Full Text PDF

Neurogenesis in mammals occurs throughout life in two brain regions: the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Development and regulation of the V-SVZ and SGZ is unique to each brain region, but with several similar characteristics. Alterations to the production of new neurons in neurogenic regions have been linked to psychiatric and neurodegenerative disorders.

View Article and Find Full Text PDF

Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice.

View Article and Find Full Text PDF