The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have been described. However, nonspherical nanoparticle shape stability in physiological-related conditions and the impact of formulation parameters on nonspherical nanoparticle resistance still need to be investigated.
View Article and Find Full Text PDFThe electrical transport properties of short-channel transistors based on single-walled carbon nanotubes (CNT) are significantly affected by bundling along with solution processing. We report that especially high off currents of CNT transistors are not only related to the incorporation of metallic CNTs but also to the incorporation of CNT bundles. By applying device passivation with poly(4-vinylpyridine), the impact of CNT bundling on the device performance can be strongly reduced due to increased gate efficiency as well as reduced oxygen and water-induced p-type doping, boosting essential field-effect transistor performance parameters by several orders of magnitude.
View Article and Find Full Text PDFWe present the synthesis of hydrogel microbeads based on telechelic poly(2-oxazoline) (POx) crosslinkers and the methacrylate monomers (HEMA, METAC, SPMA) by inverse emulsion polymerization. While in batch experiments only irregular and ill-defined beads were obtained, the preparation in a microfluidic (MF) device resulted in highly defined hydrogel microbeads. Variation of the MF parameters allowed to control the microbead diameter from 50 to 500 μm.
View Article and Find Full Text PDFAn increasing number of in vivo and in vitro neuro-engineering applications are making use of colloidal particles as neuronal cell carriers. Recent studies highlight the shortcomings of commercial glass particles and stress the benefit of using soft microgel particles (MGPs) instead. This study describes first the fabrication of MGPs from telechelic poly(2-methyl-2-oxazoline)s (PMeOx) cross-linkers and hydrophilic neutral (hydroxyethyl)methacrylate (HEMA) or charged 2-methacryloxyethyltrimethylammonium (METAC) monomers by emulsion polymerization, and it discusses their ability to support cell growth.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2015
There is significant interest in high-performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra-hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water-capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g(-1) at P/P0 =0.
View Article and Find Full Text PDFDefined aggregates of polymers such as polymeric micelles are of great importance in the development of pharmaceutical formulations. The amount of drug that can be formulated by a drug delivery system is an important issue, and most drug delivery systems suffer from their relatively low drug-loading capacity. However, as the loading capacities increase, i.
View Article and Find Full Text PDFFor the development of polymer carpets as active devices for micro- and nanotechnology, a control of the polymer carpet morphology and especially control of the stimulus responsive polymer brush is needed. Here, we report on the first example for the fabrication of patterned polymer carpets. On a two-dimensional framework of fully crosslinked and chemically patterned nanosheets, polymer brushes of styrene and 4-vinyl pyridine were grafted by self-initiated surface photopolymerization and photografting (SIPGP).
View Article and Find Full Text PDF