This study aimed to determine the protective role of the high release of C. albicans extracellular DNA (eDNA) in a polymicrobial biofilm formed by S. aureus and S.
View Article and Find Full Text PDFCellulose is a critical component of secondary cell walls (CWs) and woody tissues of plants. Cellulose synthase (CESA) complexes (CSCs) produce cellulose as they move within the plasma membrane, extruding glucan chains into the CW that coalesce and often crystallize into cellulose fibrils. Here we examine COBRA-LIKE4 (COBL4), a GPI-anchored protein on the outer leaflet of the plasma membrane that is required for normal cellulose deposition in secondary CWs.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2024
The essential role of water-conducting xylem tissue in plant growth and crop yield is well-established. However, the molecular mechanisms underlying xylem formation and its unique functionality, which is acquired post-mortem, remain poorly understood. Recent advancements in genetic tools and model systems have significantly enhanced the ability to microscopically study xylem development, particularly its distinctive cell wall patterning.
View Article and Find Full Text PDFAll plant cells are encased by walls, which provide structural support and control their morphology. How plant cells regulate the deposition of the wall to generate complex shapes is a topic of ongoing research. Scientists have identified several model systems, the epidermal pavement cells of cotyledons and leaves being an ideal platform to study the formation of complex cell shapes.
View Article and Find Full Text PDFHigh energy density micro-supercapacitors (MSCs) are in high demand for miniaturized electronics and microsystems. Research efforts today focus on materials development, applied in the planar interdigitated, symmetric electrode architecture. A novel "cup & core" device architecture that allows for printing of asymmetric devices without the need of accurately positioning the second finger electrode here have been introduced.
View Article and Find Full Text PDFMethods Mol Biol
February 2023
The preparation of biological samples, especially for live-cell microscopy, remains a major experimental challenge in the lab despite technological advances. In addition, high-resolution microscopy techniques require higher sample quality and uniformity, which is difficult to ensure during manual preparation while maintaining "ideal" growth conditions. In this protocol, we provide a way out by growing Arabidopsis thaliana seedlings directly in an imaging chamber, which eliminates invasive sample preparation directly before imaging.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Plant cell walls are versatile materials that can adopt a wide range of mechanical properties through controlled deposition of cellulose fibrils. Wall integrity requires a sufficiently homogeneous fibril distribution to cope effectively with wall stresses. Additionally, specific conditions, such as the negative pressure in water transporting xylem vessels, may require more complex wall patterns, e.
View Article and Find Full Text PDFMechanical forces control development in plants and animals, acting as cues in pattern formation and as the driving force of morphogenesis. In mammalian cells, molecular assemblies residing at the interface of the cell membrane and the extracellular matrix play an important role in perceiving and transmitting external mechanical signals to trigger physiological responses. Similar processes occur in plants, but there is little understanding of the molecular mechanisms and their genetic basis.
View Article and Find Full Text PDFAll plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions.
View Article and Find Full Text PDFProcessing 2D materials into printable or coatable inks for the fabrication of functional devices has proven to be quite difficult. Additives are often used in large concentrations to address the processing challenges, but they drastically degrade the electronic properties of the materials. To remove the additives a high-temperature post-deposition treatment can be used, but this complicates the fabrication process and limits the choice of materials (i.
View Article and Find Full Text PDFMechanical stress influences cell- and tissue-scale processes across all kingdoms. It remains challenging to delineate how mechanical stress, originating at these different length scales, impacts cell and tissue form. We combine growth tracking of cells, quantitative image analysis, as well as molecular and mechanical perturbations to address this problem in pavement cells of Arabidopsis thaliana cotyledon tissue.
View Article and Find Full Text PDFPlants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development.
View Article and Find Full Text PDFPlant organs can adopt a wide range of shapes, resulting from highly directional cell growth and divisions. We focus here on leaves and leaf-like organs in Arabidopsis and tomato, characterized by the formation of thin, flat laminae. Combining experimental approaches with 3D mechanical modeling, we provide evidence that leaf shape depends on cortical microtubule mediated cellulose deposition along the main predicted stress orientations, in particular, along the adaxial-abaxial axis in internal cell walls.
View Article and Find Full Text PDFPrinted functional conductive inks have triggered scalable production of smart electronics such as energy-storage devices, antennas, wearable electronics, etc. Of particular interest are highly conductive-additive-free inks devoid of costly postdeposition treatments to eliminate sacrificial components. Due to the high filler concentration required, formulation of such waste-free inks has proven quite challenging.
View Article and Find Full Text PDFThe cytoskeleton is key to many essential processes in a plant cell, e.g., growth, division, and defense.
View Article and Find Full Text PDFControl of the organic substrate pool that determines the microbial growth potential (MGP) of feedwater in seawater reverse osmosis (SWRO) is a challenge unresolved in conventional or advanced membrane pretreatment. Slow sand filtration (SSF) combines filtration with biodegradation, but its capability of reducing MGP, proteins and carbohydrates on seawater feeds is not known. Two SSF, one constructed with new media (newSSF) and one from a previous filtration run (oldSSF), reduced MGP as measured in a growth assay with the marine organism Pseudoalteromonas songiae by one order of magnitude after maturation periods of 76 and 61 days, respectively.
View Article and Find Full Text PDFMicrotubules are filamentous structures necessary for cell division, motility and morphology, with dynamics critically regulated by microtubule-associated proteins (MAPs). Here we outline the molecular mechanism by which the MAP, COMPANION OF CELLULOSE SYNTHASE1 (CC1), controls microtubule bundling and dynamics to sustain plant growth under salt stress. CC1 contains an intrinsically disordered N-terminus that links microtubules at evenly distributed points through four conserved hydrophobic regions.
View Article and Find Full Text PDFThe influence of nano- or micron-sized structures on polymer films as well as the impact of fiber diameter of electrospun membranes on endothelial cell (EC) and blood response has been studied for vascular tissue engineering applications. However, the influence of surface structures on micron-sized fibers on endothelial cells and blood interaction is currently not known. In this work, electrospun membranes with distinct fiber surface structures were designed to study their influence on the endothelial cell viability and thrombogenicity.
View Article and Find Full Text PDFIn plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs.
View Article and Find Full Text PDFCan orthologous proteins differ in terms of their ability to be secreted? To answer this question, we investigated the distribution of signal peptides within the orthologous groups of Enterobacterales. Parsimony analysis and sequence comparisons revealed a large number of signal peptide gain and loss events, in which signal peptides emerge or disappear in the course of evolution. Signal peptide losses prevail over gains, an effect which is especially pronounced in the transition from the free-living or commensal to the endosymbiotic lifestyle.
View Article and Find Full Text PDFThe evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown.
View Article and Find Full Text PDFCellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult.
View Article and Find Full Text PDFThe deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity.
View Article and Find Full Text PDFCurr Opin Plant Biol
December 2016
Plant growth and development are supported by plastic but strong cell walls. These walls consist largely of polysaccharides that vary in content and structure. Most of the polysaccharides are produced in the Golgi apparatus and are then secreted to the apoplast and built into the growing walls.
View Article and Find Full Text PDFCellulose is the most abundant biopolymer on Earth and is the major contributor to plant morphogenesis. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Nascent cellulose microfibrils become entangled in the cell wall, and further catalysis therefore drives the CSC forward through the membrane: a process guided by cortical microtubules via the protein CSI1/POM2.
View Article and Find Full Text PDF