Publications by authors named "Rene Santillan"

The Estrogen Metabolites (2-hydroxyestrogens: 16α-hydroxyestrone) Urine Ratio (EMUR) has been negatively associated with breast cancer; Mexican women have a lower EMUR than other populations. We evaluated the effectiveness of 3,3'-diindolylmethane (DIM) supplementation on increasing EMUR in premenopausal women. A randomized, double-blind clinical trial (NCT02525159 at ClinicalTrial.

View Article and Find Full Text PDF

Testosterone (T) restores bone mass loss in postmenopausal women and osteoporotic men mainly through its bioconversion to estradiol (E2). In target tissues, T is also biotransformed to the A-ring-reduced metabolites 3α,5α-androstanediol (3α,5α-diol) and 3β,5α-androstanediol (3β,5α-diol), which are potent estrogen receptor (ER) agonists; however, their biological role in bone has not been completely elucidated. To assess if osteoblasts bioconvert T to 3α,5α-diol and to 3β,5α-diol, we studied in cultured neonatal rat osteoblasts the metabolism of [14C]-labeled T.

View Article and Find Full Text PDF

Background: Buame [17β-(butylamino)-1,3,5(10)-estratrien-3-ol] possesses anticoagulant and antiplatelet activities that are potentially antithrombotic. Since its estrogenicity is unknown, it was evaluated by established methods.

Methods: Buame (10, 100, 500, and 1,000 μg/kg), 17β-estradiol (E(2)) (100 μg/kg), or propylene glycol (10 ml/kg) were subcutaneously (sc) administered for three days to immature Wistar female rats (21 days old).

View Article and Find Full Text PDF

A number of clinical studies have demonstrated that norethisterone (NET), a potent synthetic progestin, restores postmenopausal bone loss, although its mode of action on bone cells is not fully understood, while the effect of naturally occurring progesterone in bone has remained controversial. A recent report claims that the potent effects of NET on osteoblastic cell proliferation and differentiation, mimicking the action of estrogens, are mediated by non-phenolic NET derivatives. To determine whether osteoblasts possess the enzymes required to bioconvert a progesterone receptor (PR) agonist into A-ring reduced metabolites with affinity to bind estrogen receptor (ER), we studied the in vitro metabolism of [(3)H]-labeled NET in cultured neonatal rat osteoblasts and the interaction of its metabolic conversion products with cytosolic -osteoblast ER, employing a competition analysis.

View Article and Find Full Text PDF

Breast cancer is a sex steroid hormone-dependent malignant neoplasia. The role of oestradiol in this malignancy has been well documented; however, the involvement of androgens has remained controversial. To determine the role of non-phenolic androgen metabolites in human breast cancer, we studied the metabolism of [(14)C] testosterone and [(14)C] androstenedione in oestrogen-dependent MCF-7 cells and non-oestrogen-dependent MDA-MB 231 cells, at different substrate concentrations (1-10 muM) and time periods (30 min-48 h).

View Article and Find Full Text PDF