Resolution in a confocal laser scanning microscopes (CLSM) can be improved if the pinhole is closed. But closing the pinhole will deteriorate the signal to noise ratio (SNR). A simple technique to improve the SNR while keeping the resolution same by upgrading the system to an image scanning microscope.
View Article and Find Full Text PDFImage scanning microscopy (ISM) overcomes the trade-off between spatial resolution and signal volume in confocal microscopy by rearranging the signal distribution on a two-dimensional detector array to achieve a spatial resolution close to the theoretical limit achievable by infinitesimal pinhole detection without sacrificing the detected signal intensity. In this paper, we improved the spatial resolution of ISM in three dimensions by exploiting saturated excitation (SAX) of fluorescence. We theoretically investigated the imaging properties of ISM, when the fluorescence signals are nonlinearly induced by SAX, and show combined SAX-ISM fluorescence imaging to demonstrate the improvement of the spatial resolution in three dimensions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2022
State-of-the-art microscopy techniques enable the imaging of sub-diffraction barrier biological structures at the price of high costs or a lack of transparency. We try to reduce some of these barriers by presenting a super-resolution upgrade to our recently presented open-source optical toolbox UC2. Our new injection moulded parts allow larger builds with higher precision.
View Article and Find Full Text PDFModern microscopes used for biological imaging often present themselves as black boxes whose precise operating principle remains unknown, and whose optical resolution and price seem to be in inverse proportion to each other. With UC2 (You. See.
View Article and Find Full Text PDF