Publications by authors named "Rene Labounek"

Background And Objectives: Childhood cerebral adrenoleukodystrophy (C-ALD) is a severe inflammatory demyelinating disease that must be treated at an early stage to prevent permanent brain injury and neurocognitive decline. In standard clinical practice, C-ALD lesions are detected and characterized by a neuroradiologist reviewing anatomical MRI scans. We aimed to assess whether diffusion tensor imaging (DTI) is sensitive to the presence and severity of C-ALD lesions and to investigate associations with neurocognitive outcomes after hematopoietic cell therapy (HCT).

View Article and Find Full Text PDF
Article Synopsis
  • Clinical research typically requires careful study designs that account for variables like sex and age, but often overlooks body size factors like height and weight in neuroimaging studies.
  • This study analyzed data from 267 healthy adults to explore how body height and weight relate to various brain and spinal cord MRI metrics, finding significant correlations, especially with brain gray matter volume and cervical spinal cord area.
  • The results suggest that body size is an important biological variable that should be included in clinical neuroimaging study designs to enhance accuracy in understanding brain and spinal cord structures.
View Article and Find Full Text PDF

Our goal was to identify highly accurate empirical models for the prediction of the risk of febrile seizure (FS) and FS recurrence. In a prospective, three-arm, case-control study, we enrolled 162 children (age 25.8 ± 17.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B; OMIM #252920) is a lethal, pediatric, neuropathic, autosomal recessive, and lysosomal storage disease with no approved therapy. Patients are deficient in the activity of N-acetyl-alpha-glucosaminidase (NAGLU; EC 3.2.

View Article and Find Full Text PDF

Theoretical models of retinal hemodynamics showed the modulation of retinal pulsatile patterns (RPPs) by heart rate (HR), yet in-vivo validation and scientific merit of this biological process is lacking. Such evidence is critical for result interpretation, study design, and (patho-)physiological modeling of human biology spanning applications in various medical specialties. In retinal hemodynamic video-recordings, we characterize the morphology of RPPs and assess the impact of modulation by HR or other variables.

View Article and Find Full Text PDF

Purpose: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter.

View Article and Find Full Text PDF

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation.

View Article and Find Full Text PDF
Article Synopsis
  • A new standardized quantitative MRI protocol for spinal cord imaging, called the spine generic protocol, has been developed to be used with 3T MRI systems from major manufacturers like GE, Philips, and Siemens.
  • The protocol includes specific imaging techniques for evaluating spinal cord macrostructure and microstructure, such as T1 and T2-weighted imaging to determine cross-sectional areas and diffusion-weighted imaging for white matter assessment.
  • An open-access document detailing the protocol is available online, providing a useful resource for researchers and clinicians aiming to enhance spinal cord imaging in neuroimaging practices.
View Article and Find Full Text PDF
Article Synopsis
  • - The paper by Cohen-Adad et al. introduces a standardized MRI protocol for evaluating spinal cord integrity, tested across 19 and 42 centers for single and multi-subject datasets respectively, involving a total of 260 participants.
  • - The datasets are openly available online, allowing researchers to access valuable data for analysis using tools like the Spinal Cord Toolbox, which produces normative values and statistics on variability across sites and manufacturers.
  • - The protocol demonstrated high reproducibility with less than 5% variation across different sites and manufacturers, aiming to enhance the accessibility and reliability of quantitative MRI assessments in spinal research.
View Article and Find Full Text PDF

Background And Purpose: Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM.

View Article and Find Full Text PDF

Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.

View Article and Find Full Text PDF

Dynamic optical imaging of retinal hemodynamics is a rapidly evolving technique in vision and eye-disease research. Video-recording, which may be readily accessible and affordable, captures several distinct functional phenomena such as the spontaneous venous pulsations (SVP) of central vein or local arterial blood supply etc. These phenomena display specific dynamic patterns that have been detected using manual or semi-automated methods.

View Article and Find Full Text PDF

Diffusion magnetic resonance imaging (dMRI) proved promising in patients with non-myelopathic degenerative cervical cord compression (NMDCCC), i.e., without clinically manifested myelopathy.

View Article and Find Full Text PDF

All men and most women with X-linked adrenoleukodystrophy (ALD) develop myelopathy in adulthood. As clinical trials with new potential disease-modifying therapies are emerging, sensitive outcome measures for quantifying myelopathy are needed. This prospective cohort study evaluated spinal cord size (cross-sectional area - CSA) and shape (eccentricity) as potential new quantitative outcome measures for myelopathy in ALD.

View Article and Find Full Text PDF

Optical imaging of retinal hemodynamic function is an important part of ophthalmologic research. Development and inventing of imaging devices and data analysis methods are both just in progress. The current study innovatively implements two blind source separation (BSS) techniques (i.

View Article and Find Full Text PDF

Cortical thickness measurement estimated from high-resolution anatomical MRI scans may serve as a marker of cortical atrophy in clinical research applications. Most of the working algorithms and pipelines are optimized for human in-vivo data analyses that offer robust and reproducible measures. As animal-models are widely utilized in many preclinical phases of clinical trials the need for an optimized automated MRI data analysis to yield reliable data is warranted.

View Article and Find Full Text PDF

Sustained pressure stimulation of the body surface has been used in several physiotherapeutic techniques, such as reflex locomotion therapy. Clinical observations of global motor responses and subsequent motor behavioral changes after stimulation in certain sites suggest modulation of central sensorimotor control, however, the neuroanatomical correlates remain undescribed. We hypothesized that different body sites would specifically influence the sensorimotor system during the stimulation.

View Article and Find Full Text PDF

Background: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization.

View Article and Find Full Text PDF

Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics.

View Article and Find Full Text PDF

Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC).

View Article and Find Full Text PDF

Background: The paper deals with joint analysis of fMRI and scalp EEG data, simultaneously acquired during event-related oddball experiment. The analysis is based on deriving temporal sequences of EEG powers in individual frequency bands for the selected EEG electrodes and using them as regressors in the general linear model (GLM).

New Method: Given the infrequent use of EEG spectral changes to explore task-related variability, we focused on the aspects of parameter setting during EEG regressor calculation and searched for such parameters that can detect task-related variability in EEG-fMRI data.

View Article and Find Full Text PDF