Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).
View Article and Find Full Text PDFBlock copolymers are recognized as a valuable platform for creating nanostructured materials. Morphologies formed by block copolymer self-assembly can be transferred into a wide range of inorganic materials, enabling applications including energy storage and metamaterials. However, imaging of the underlying, often complex, nanostructures in large volumes has remained a challenge, limiting progress in materials development.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Block copolymers (BCPs) are particularly effective in creating soft nanostructured templates for transferring complex 3D network structures into inorganic materials that are difficult to fabricate by other methods. However, achieving control of the local ordering within these 3D networks over large areas remains a significant obstacle to advancing material properties. Here, we address this challenge by directing the self-assembly of a 3D alternating diamond morphology by solvent vapor annealing of a triblock terpolymer film on a chemically patterned substrate.
View Article and Find Full Text PDFAppl Phys A Mater Sci Process
March 2023
The circular dichroism (CD) of a material is the difference in optical absorption under left- and right-circularly polarized illumination. It is crucial for a number of applications, from molecular sensing to the design of circularly polarized thermal light sources. The CD in natural materials is typically weak, leading to the exploitation of artificial chiral materials.
View Article and Find Full Text PDF